1
|
Katbashev A, Stahn M, Rose T, Alizadeh V, Friede M, Plett C, Steinbach P, Ehlert S. Overview on Building Blocks and Applications of Efficient and Robust Extended Tight Binding. J Phys Chem A 2025. [PMID: 40013428 DOI: 10.1021/acs.jpca.4c08263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The extended tight binding (xTB) family of methods opened many new possibilities in the field of computational chemistry. Within just 5 years, the GFN2-xTB parametrization for all elements up to Z = 86 enabled more than a thousand applications, which were previously not feasible with other electronic structure methods. The xTB methods provide a robust and efficient way to apply quantum mechanics-based approaches for obtaining molecular geometries, computing free energy corrections or describing noncovalent interactions and found applicability for many more targets. A crucial contribution to the success of the xTB methods is the availability within many simulation packages and frameworks, supported by the open source development of its program library and packages. We present a comprehensive summary of the applications and capabilities of xTB methods in different fields of chemistry. Moreover, we consider the main software packages for xTB calculations, covering their current ecosystem, novel features, and usage by the scientific community.
Collapse
Affiliation(s)
- Abylay Katbashev
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Marcel Stahn
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
- OpenEye, Cadence Molecular Sciences, Ebertplatz 1, 50668 Cologne, Germany
| | - Thomas Rose
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Vahideh Alizadeh
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
- Center for Advanced Systems Understanding (CASUS), Untermarkt 20, 02826 Görlitz, Germany
| | - Marvin Friede
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Christoph Plett
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Pit Steinbach
- Institute of Physical Chemistry, RWTH Aachen University, Melatener Str. 20, 52074 Aachen, Germany
| | - Sebastian Ehlert
- AI for Science, Microsoft Research, Evert van de Beekstraat 354, 1118 CZ Schiphol, The Netherlands
| |
Collapse
|
2
|
Tannic acid-derived selective capture of bacteria from apple juice. Food Chem 2023; 412:135539. [PMID: 36731236 DOI: 10.1016/j.foodchem.2023.135539] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Given the enormous burden pathogens pose on human health, rapid capture and removal of bacteria for sterilization or further bacterial detection is essential. Herein, tannic acid-functionalized virus-like Fe3O4 (vFe3O4-TA) was established for bacterial enrichment. We investigated the ability of vFe3O4-TA to capture Gram-negative bacteria (E. coli, S. flex and S. typhi) and Gram-positive bacteria (S. aureus, MRSA and LM), respectively. Compared to the capture efficiency of <15 % for Gram-negative bacteria, vFe3O4-TA showed excellent selectivity and efficiency in isolating Gram-positive bacteria with >87 % removal efficiency. GFN-xTB semiempirical quantum chemical calculations revealed that the selective recognition originates from the high affinity between TA and peptidoglycan. Without impacting ingredients, the TA-mediated trapper also shows excellent ability to distinguish Gram-positive bacteria in juice samples. These results are expected to reveal the interaction of TA with bacteria, and inaugurate a potential natural safe tool for food safety control, medical treatment and environmental remediation.
Collapse
|
3
|
Jiang L, Zheng K. Electronic structures of zwitterionic and protonated forms of glycine betaine in water: Insights into solvent effects from ab initio simulations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Wang Q, Sun Z, Li D, Ye K, Xie C, Zhang S, Jiang L, Zheng K, Pang Q. Determination of protonation state in molecular salt of minoxidil and 2,4-dihydroxybenzoic acid through a combined experimental and theoretical study: influence of proton transfer on biological activities. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|