1
|
Alaa Eldin Refat L, O’Malley C, Simmie JM, McArdle P, Erxleben A. Differences in Coformer Interactions of the 2,4-Diaminopyrimidines Pyrimethamine and Trimethoprim. CRYSTAL GROWTH & DESIGN 2022; 22:3163-3173. [PMID: 35529062 PMCID: PMC9073935 DOI: 10.1021/acs.cgd.2c00035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/25/2022] [Indexed: 05/27/2023]
Abstract
The identification and study of supramolecular synthons is a fundamental task in the design of pharmaceutical cocrystals. The malaria drug pyrimethamine (pyr) and the antibiotic trimethoprim (tmp) are both 2,4-diaminopyrimidine derivatives, providing the same C-NH2/N=C/C-NH2 and C-NH2/N=C interaction sites. In this article, we analyze and compare the synthons observed in the crystal structures of tmp and pyr cocrystals and molecular salts with sulfamethazine (smz), α-ketoglutaric acid (keto), oxalic acid (ox), sebacic acid (seb), and azeliac acid (az). We show that the same coformer interacts with different binding sites of the 2,4-diaminopyrimidine ring in the respective tmp and pyr cocrystals or binds at the same site but gives H bonding patterns with different graph set notions. Pyr·smz·CH3OH is the first crystal structure in which the interaction of the sulfa drug at the C-NH2/N=C/C-NH2 site with three parallel NH2···N, N···NHsulfonamide, and NH2···O=S H bonds is observed. The main synthon in (tmp+)(keto-).0.5H2O and (tmp+)2(ox2-)·2CH3OH is the motif of fused R 2 1(6) and R 1 2(5) rings instead of the R 2 2(8) motif typically observed in tmp+ and pyr+ carboxylates. Tmp/az is a rare example of cocrystal-salt polymorphism where the two solid-state forms have the same composition, stoichiometry, and main synthon. Theoretical calculations were performed to understand the order of stability, which is tmp·az cocrystal > (tmp+)(az-) salt. Finally, two three-component tmp/sulfa drug/carboxylate cocrystals with a unique ternary synthon are described.
Collapse
Affiliation(s)
- Lamis Alaa Eldin Refat
- School
of Chemistry, National University of Ireland
Galway, Galway H91TK33, Ireland
- Synthesis
and Solid State Pharmaceutical Centre (SSPC), Limerick V94 T9PX, Ireland
| | - Ciaran O’Malley
- School
of Chemistry, National University of Ireland
Galway, Galway H91TK33, Ireland
| | - John M. Simmie
- School
of Chemistry, National University of Ireland
Galway, Galway H91TK33, Ireland
| | - Patrick McArdle
- School
of Chemistry, National University of Ireland
Galway, Galway H91TK33, Ireland
| | - Andrea Erxleben
- School
of Chemistry, National University of Ireland
Galway, Galway H91TK33, Ireland
- Synthesis
and Solid State Pharmaceutical Centre (SSPC), Limerick V94 T9PX, Ireland
| |
Collapse
|
2
|
Unexpected Salt/Cocrystal Polymorphism of the Ketoprofen-Lysine System: Discovery of a New Ketoprofen-l-Lysine Salt Polymorph with Different Physicochemical and Pharmacokinetic Properties. Pharmaceuticals (Basel) 2021; 14:ph14060555. [PMID: 34200917 PMCID: PMC8230491 DOI: 10.3390/ph14060555] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022] Open
Abstract
Ketoprofen–l-lysine salt (KLS) is a widely used nonsteroidal anti-inflammatory drug. Here, we studied deeply the solid-state characteristics of KLS to possibly identify new polymorphic drugs. Conducting a polymorph screening study and combining conventional techniques with solid-state nuclear magnetic resonance, we identified, for the first time, a salt/cocrystal polymorphism of the ketoprofen (KET)–lysine (LYS) system, with the cocrystal, KET–LYS polymorph 1 (P1), being representative of commercial KLS, and the salt, KET–LYS polymorph 2 (P2), being a new polymorphic form of KLS. Interestingly, in vivo pharmacokinetics showed that the salt polymorph has significantly higher absorption and, thus, different pharmacokinetics compared to commercial KLS (cocrystal), laying the basis for the development of faster-release/acting KLS formulations. Moreover, intrinsic dissolution rate (IDR) and electronic tongue analyses showed that the salt has a higher IDR, a more bitter taste, and a different sensorial kinetics compared to the cocrystal, suggesting that different coating/flavoring processes should be envisioned for the new compound. Thus, the new KLS polymorphic form with its different physicochemical and pharmacokinetic characteristics can open the way to the development of a new KET–LYS polymorph drug that can emphasize the properties of commercial KLS for the treatment of acute inflammatory and painful conditions.
Collapse
|
3
|
Nugrahani I, Jessica MA. Amino Acids as the Potential Co-Former for Co-Crystal Development: A Review. Molecules 2021; 26:3279. [PMID: 34071731 PMCID: PMC8198002 DOI: 10.3390/molecules26113279] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
Co-crystals are one of the most popular ways to modify the physicochemical properties of active pharmaceutical ingredients (API) without changing pharmacological activity through non-covalent interactions with one or more co-formers. A "green method" has recently prompted many researchers to develop solvent-free techniques or minimize solvents for arranging the eco-friendlier process of co-crystallization. Researchers have also been looking for less-risk co-formers that produce the desired API's physicochemical properties. This review purposed to collect the report studies of amino acids as the safe co-former and explored their advantages. Structurally, amino acids are promising co-former candidates as they have functional groups that can form hydrogen bonds and increase stability through zwitterionic moieties, which support strong interactions. The co-crystals and deep eutectic solvent yielded from this natural compound have been proven to improve pharmaceutical performance. For example, l-glutamine could reduce the side effects of mesalamine through an acid-base stabilizing effect in the gastrointestinal fluid. In addition, some amino acids, especially l-proline, enhances API's solubility and absorption in its natural deep eutectic solvent and co-crystals systems. Moreover, some ionic co-crystals of amino acids have also been designed to increase chiral resolution. Therefore, amino acids are safe potential co-formers, which are suitable for improving the physicochemical properties of API and prospective to be developed further in the dosage formula and solid-state syntheses.
Collapse
Affiliation(s)
- Ilma Nugrahani
- Pharmacochemistry Department, School of Pharmacy, Bandung Institute of Technology, Bandung 40132, Indonesia;
| | | |
Collapse
|
4
|
Solares-Briones M, Coyote-Dotor G, Páez-Franco JC, Zermeño-Ortega MR, de la O Contreras CM, Canseco-González D, Avila-Sorrosa A, Morales-Morales D, Germán-Acacio JM. Mechanochemistry: A Green Approach in the Preparation of Pharmaceutical Cocrystals. Pharmaceutics 2021; 13:790. [PMID: 34070646 PMCID: PMC8228148 DOI: 10.3390/pharmaceutics13060790] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
Mechanochemistry is considered an alternative attractive greener approach to prepare diverse molecular compounds and has become an important synthetic tool in different fields (e.g., physics, chemistry, and material science) since is considered an ecofriendly procedure that can be carried out under solvent free conditions or in the presence of minimal quantities of solvent (catalytic amounts). Being able to substitute, in many cases, classical solution reactions often requiring significant amounts of solvents. These sustainable methods have had an enormous impact on a great variety of chemistry fields, including catalysis, organic synthesis, metal complexes formation, preparation of multicomponent pharmaceutical solid forms, etc. In this sense, we are interested in highlighting the advantages of mechanochemical methods on the obtaining of pharmaceutical cocrystals. Hence, in this review, we describe and discuss the relevance of mechanochemical procedures in the formation of multicomponent solid forms focusing on pharmaceutical cocrystals. Additionally, at the end of this paper, we collect a chronological survey of the most representative scientific papers reporting the mechanochemical synthesis of cocrystals.
Collapse
Affiliation(s)
- Mizraín Solares-Briones
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| | - Guadalupe Coyote-Dotor
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| | - José C. Páez-Franco
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| | - Miriam R. Zermeño-Ortega
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario No. 1, Nuevo Campus Universitario, Apdo. Postal 1552, Chihuahua, C.P. 31125, Mexico; (M.R.Z.-O.); (C.M.d.l.OC.)
| | - Carmen Myriam de la O Contreras
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario No. 1, Nuevo Campus Universitario, Apdo. Postal 1552, Chihuahua, C.P. 31125, Mexico; (M.R.Z.-O.); (C.M.d.l.OC.)
| | - Daniel Canseco-González
- CONACYT-Laboratorio Nacional de Investigación y Servicio Agroalimentario y Forestal, Universidad Autónoma de Chapingo, Texcoco de Mora, C.P. 56230, Mexico;
| | - Alcives Avila-Sorrosa
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Química Orgánica, Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Ciudad de México, C.P. 11340, Mexico;
| | - David Morales-Morales
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04510, Mexico
| | - Juan M. Germán-Acacio
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| |
Collapse
|
5
|
Losev EA, Pishchur DP, Boldyreva EV. A new monohydrated molecular salt of GABA with l-tartaric acid: the structure-forming role of water. CrystEngComm 2021. [DOI: 10.1039/d1ce00470k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A novel monohydrated molecular salt of GABA with l-tartaric acid was crystallized and investigated.
Collapse
Affiliation(s)
- E. A. Losev
- Boreskov Institute of Catalysis SB RAS, Lavrentiev Ave. 5, Novosibirsk 630090, Russian Federation
- Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russian Federation
| | - D. P. Pishchur
- Nikolaev Institute of Inorganic Chemistry SB RAS, Lavrentiev Ave. 3, Novosibirsk 630090, Russian Federation
| | - E. V. Boldyreva
- Boreskov Institute of Catalysis SB RAS, Lavrentiev Ave. 5, Novosibirsk 630090, Russian Federation
- Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russian Federation
| |
Collapse
|
6
|
Drozd KV, Arkhipov SG, Boldyreva EV, Perlovich GL. Crystal structure of a 1:1 salt of 4-amino-benzoic acid (vitamin B 10) with pyrazinoic acid. Acta Crystallogr E Crystallogr Commun 2018; 74:1923-1927. [PMID: 30574402 PMCID: PMC6281118 DOI: 10.1107/s2056989018016663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/23/2018] [Indexed: 11/28/2022]
Abstract
The title 1:1 salt, C7H8NO2 +·C5H3N2O2 - (systematic name: 4-carb-oxy-anilinium pyrazine-2-carboxyl-ate), was synthesized successfully by slow evaporation of a saturated solution from water-ethanol (1:1 v/v) mixture and characterized by X-ray diffraction (SCXRD, PXRD) and calorimetry (DSC). The crystal structure of the salt was solved and refined at 150 and 293 K. The salt crystallizes with one mol-ecule of 4-amino-benzoic acid (PABA) and one mol-ecule of pyrazinoic acid (POA) in the asymmetric unit. In the crystal, the PABA and POA mol-ecules are associated via COOH⋯Narom heterosynthons, which are connected by N-H⋯O hydrogen bonds, creating zigzag chains. The chains are further linked by N-H⋯O hydrogen bonds and π-π stacking inter-actions along the b axis [centroid-to-centroid distances = 3.7377 (13) and 3.8034 (13) Å at 150 and 293 K, respectively] to form a layered three-dimensional structure.
Collapse
Affiliation(s)
- K. V. Drozd
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1, Academicheskaya, Ivanovo 153045, Russian Federation
| | - S. G. Arkhipov
- Novosibirsk State University, Pirogova str. 2, Novosibirsk, 630090, Russian Federation
- Institute of Solid State Chemistry and Mechanochemistry SB RAS, Kutateladze str. 18, Novosibirsk 630128, Russian Federation
| | - E. V. Boldyreva
- Novosibirsk State University, Pirogova str. 2, Novosibirsk, 630090, Russian Federation
- G. K. Boreskov Institute of Catalysis SB RAS, Laverentiev Ave. 5, Novosibirsk 630090, Russian Federation
| | - G. L. Perlovich
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1, Academicheskaya, Ivanovo 153045, Russian Federation
| |
Collapse
|
7
|
Abstract
By controlling nucleation and growth through choice of crystallization conditions, the stable co-crystal or metastable salt can be reproducibly obtained in accordance with Ostwald's rule of stages and the concept of ‘disappearing polymorphs’.
Collapse
Affiliation(s)
- E. A. Losev
- Group of Reactivity of Solids
- Institute of Solid State Chemistry and Mechanochemistry SB RAS
- Novosibirsk
- Russian Federation
- Laboratory of Solid State Reactivity
| | - E. V. Boldyreva
- Group of Reactivity of Solids
- Institute of Solid State Chemistry and Mechanochemistry SB RAS
- Novosibirsk
- Russian Federation
- Department of Solid State Chemistry
| |
Collapse
|