1
|
Richter I, Uzum Z, Wein P, Molloy EM, Moebius N, Stinear TP, Pidot SJ, Hertweck C. Transcription activator-like effectors from endosymbiotic bacteria control the reproduction of their fungal host. mBio 2023; 14:e0182423. [PMID: 37971247 PMCID: PMC10746252 DOI: 10.1128/mbio.01824-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/03/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Interactions between fungi and bacteria are critically important in ecology, medicine, and biotechnology. In this study, we shed light on factors that promote the persistence of a toxin-producing, phytopathogenic Rhizopus-Mycetohabitans symbiosis that causes severe crop losses in Asia. We present an unprecedented case where bacterially produced transcription activator-like (TAL) effectors are key to maintaining a stable endosymbiosis. In their absence, fungal sporulation is abrogated, leading to collapse of the phytopathogenic alliance. The Mycetohabitans TAL (MTAL)-mediated mechanism of host control illustrates a unique role of bacterial effector molecules that has broader implications, potentially serving as a model to understand how prokaryotic symbionts interact with their eukaryotic hosts.
Collapse
Affiliation(s)
- Ingrid Richter
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Zerrin Uzum
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Philipp Wein
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Evelyn M. Molloy
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Nadine Moebius
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Doherty Institute, Melbourne, Australia
| | - Sacha J. Pidot
- Department of Microbiology and Immunology, Doherty Institute, Melbourne, Australia
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
2
|
Richter I, Wein P, Uzum Z, Stanley CE, Krabbe J, Molloy EM, Moebius N, Ferling I, Hillmann F, Hertweck C. Transcription activator-like effector protects bacterial endosymbionts from entrapment within fungal hyphae. Curr Biol 2023:S0960-9822(23)00623-1. [PMID: 37301202 DOI: 10.1016/j.cub.2023.05.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/30/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023]
Abstract
As an endosymbiont of the ecologically and medically relevant fungus Rhizopus microsporus, the toxin-producing bacterium Mycetohabitans rhizoxinica faces myriad challenges, such as evading the host's defense mechanisms. However, the bacterial effector(s) that facilitate the remarkable ability of M. rhizoxinica to freely migrate within fungal hyphae have thus far remained unknown. Here, we show that a transcription activator-like (TAL) effector released by endobacteria is an essential symbiosis factor. By combining microfluidics with fluorescence microscopy, we observed enrichment of TAL-deficient M. rhizoxinica in side hyphae. High-resolution live imaging showed the formation of septa at the base of infected hyphae, leading to the entrapment of endobacteria. Using a LIVE/DEAD stain, we demonstrate that the intracellular survival of trapped TAL-deficient bacteria is significantly reduced compared with wild-type M. rhizoxinica, indicative of a protective host response in the absence of TAL proteins. Subversion of host defense in TAL-competent endobacteria represents an unprecedented function of TAL effectors. Our data illustrate an unusual survival strategy of endosymbionts in the host and provide deeper insights into the dynamic interactions between bacteria and eukaryotes.
Collapse
Affiliation(s)
- Ingrid Richter
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Philipp Wein
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Zerrin Uzum
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Claire E Stanley
- Department of Bioengineering, Imperial College, South Kensington, London SW7 2AZ, UK
| | - Jana Krabbe
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Evelyn M Molloy
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Nadine Moebius
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Iuliia Ferling
- Junior Research Group Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Falk Hillmann
- Junior Research Group Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany; Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany.
| |
Collapse
|
3
|
Meygret A, Peuchant O, Dordet-Frisoni E, Sirand-Pugnet P, Citti C, Bébéar C, Béven L, Pereyre S. High Prevalence of Integrative and Conjugative Elements Encoding Transcription Activator-Like Effector Repeats in Mycoplasma hominis. Front Microbiol 2019; 10:2385. [PMID: 31681239 PMCID: PMC6813540 DOI: 10.3389/fmicb.2019.02385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/01/2019] [Indexed: 12/02/2022] Open
Abstract
Integrative and conjugative elements (ICEs) are modular mobile genetic elements that can disseminate through excision, circularization, and transfer. Mycoplasma ICEs have recently been found distributed among some mycoplasma species and there is accumulating evidence that they play a pivotal role in horizontal gene transfers. The occurrence of ICEs has not been documented in Mycoplasma hominis, a human urogenital pathogen responsible for urogenital infections, neonatal infections and extragenital infections. In this study, we searched for, characterized, and compared ICEs by genome analyses of 12 strains of M. hominis. ICEs of 27–30 kb were found in one or two copies in seven of the 12 M. hominis strains sequenced. Only five of these ICEs seemed to be functional, as assessed by detection of circular forms of extrachromosomal ICE. Moreover, the prevalence of ICEs in M. hominis was estimated to be 45% in a collection of 120 clinical isolates of M. hominis, including 27 tetracycline-resistant tet(M)-positive isolates. The proportion of ICEs was not higher in isolates carrying the tet(M) gene, suggesting that ICEs are not involved in tetracycline resistance. Notably, all M. hominis ICEs had a very similar structure, consisting of a 4.0–5.1 kb unusual module composed of five to six juxtaposed CDSs. All the genes forming this module were specific to M. hominis ICEs as they had no homologs in other mycoplasma ICEs. In each M. hominis ICE, one to three CDSs encode proteins that share common structural features with transcription activator-like (TAL) effectors involved in polynucleotide recognition and signal transduction in symbiotic plant pathogen bacteria. The conserved and specific structure of M. hominis ICEs and the high prevalence in clinical strains suggest that these ICEs may confer a selective advantage for the physiology or pathogenicity of this human pathogenic bacterium. These data open the way for further studies aiming at unraveling horizontal gene transfers and virulence factors in M. hominis.
Collapse
Affiliation(s)
- Alexandra Meygret
- USC EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Bordeaux, France.,INRA, USC-EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Bordeaux, France.,Department of Bacteriology, French National Reference Center for Bacterial STI, CHU Bordeaux, Bordeaux, France
| | - Olivia Peuchant
- USC EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Bordeaux, France.,INRA, USC-EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Bordeaux, France.,Department of Bacteriology, French National Reference Center for Bacterial STI, CHU Bordeaux, Bordeaux, France
| | - Emilie Dordet-Frisoni
- IHAP, INRA, Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
| | - Pascal Sirand-Pugnet
- UMR 1332, BFP, University of Bordeaux, Bordeaux, France.,INRA, UMR 1332, BFP, Bordeaux, France
| | - Christine Citti
- IHAP, INRA, Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
| | - Cécile Bébéar
- USC EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Bordeaux, France.,INRA, USC-EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Bordeaux, France.,Department of Bacteriology, French National Reference Center for Bacterial STI, CHU Bordeaux, Bordeaux, France
| | - Laure Béven
- UMR 1332, BFP, University of Bordeaux, Bordeaux, France.,INRA, UMR 1332, BFP, Bordeaux, France
| | - Sabine Pereyre
- USC EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Bordeaux, France.,INRA, USC-EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Bordeaux, France.,Department of Bacteriology, French National Reference Center for Bacterial STI, CHU Bordeaux, Bordeaux, France
| |
Collapse
|
4
|
Bogdanove AJ, Bohm A, Miller JC, Morgan RD, Stoddard BL. Engineering altered protein-DNA recognition specificity. Nucleic Acids Res 2018; 46:4845-4871. [PMID: 29718463 PMCID: PMC6007267 DOI: 10.1093/nar/gky289] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 02/07/2023] Open
Abstract
Protein engineering is used to generate novel protein folds and assemblages, to impart new properties and functions onto existing proteins, and to enhance our understanding of principles that govern protein structure. While such approaches can be employed to reprogram protein-protein interactions, modifying protein-DNA interactions is more difficult. This may be related to the structural features of protein-DNA interfaces, which display more charged groups, directional hydrogen bonds, ordered solvent molecules and counterions than comparable protein interfaces. Nevertheless, progress has been made in the redesign of protein-DNA specificity, much of it driven by the development of engineered enzymes for genome modification. Here, we summarize the creation of novel DNA specificities for zinc finger proteins, meganucleases, TAL effectors, recombinases and restriction endonucleases. The ease of re-engineering each system is related both to the modularity of the protein and the extent to which the proteins have evolved to be capable of readily modifying their recognition specificities in response to natural selection. The development of engineered DNA binding proteins that display an ideal combination of activity, specificity, deliverability, and outcomes is not a fully solved problem, however each of the current platforms offers unique advantages, offset by behaviors and properties requiring further study and development.
Collapse
Affiliation(s)
- Adam J Bogdanove
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Andrew Bohm
- Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Jeffrey C Miller
- Sangamo Therapeutics Inc. 501 Canal Blvd., Richmond, CA 94804, USA
| | - Richard D Morgan
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98019, USA
| |
Collapse
|
5
|
Perycz M, Krwawicz J, Bochtler M. A TALE-inspired computational screen for proteins that contain approximate tandem repeats. PLoS One 2017; 12:e0179173. [PMID: 28617832 PMCID: PMC5472282 DOI: 10.1371/journal.pone.0179173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/24/2017] [Indexed: 11/18/2022] Open
Abstract
TAL (transcription activator-like) effectors (TALEs) are bacterial proteins that are secreted from bacteria to plant cells to act as transcriptional activators. TALEs and related proteins (RipTALs, BurrH, MOrTL1 and MOrTL2) contain approximate tandem repeats that differ in conserved positions that define specificity. Using PERL, we screened ~47 million protein sequences for TALE-like architecture characterized by approximate tandem repeats (between 30 and 43 amino acids in length) and sequence variability in conserved positions, without requiring sequence similarity to TALEs. Candidate proteins were scored according to their propensity for nuclear localization, secondary structure, repeat sequence complexity, as well as covariation and predicted structural proximity of variable residues. Biological context was tentatively inferred from co-occurrence of other domains and interactome predictions. Approximate repeats with TALE-like features that merit experimental characterization were found in a protein of chestnut blight fungus, a eukaryotic plant pathogen.
Collapse
Affiliation(s)
- Malgorzata Perycz
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland
- International Institute of Molecular and Cell Biology in Warsaw, Poland
| | - Joanna Krwawicz
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland
- International Institute of Molecular and Cell Biology in Warsaw, Poland
| | - Matthias Bochtler
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland
- International Institute of Molecular and Cell Biology in Warsaw, Poland
- * E-mail:
| |
Collapse
|
6
|
Mehrotra R, Renganaath K, Kanodia H, Loake GJ, Mehrotra S. Towards combinatorial transcriptional engineering. Biotechnol Adv 2017; 35:390-405. [PMID: 28300614 DOI: 10.1016/j.biotechadv.2017.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/22/2017] [Accepted: 03/09/2017] [Indexed: 01/31/2023]
Abstract
The modular nature of the transcriptional unit makes it possible to design robust modules with predictable input-output characteristics using a ‘parts- off a shelf’ approach. Customized regulatory circuits composed of multiple such transcriptional units have immense scope for application in diverse fields of basic and applied research. Synthetic transcriptional engineering seeks to construct such genetic cascades. Here, we discuss the three principle strands of transcriptional engineering: promoter and transcriptional factor engineering, and programming inducibilty into synthetic modules. In this context, we review the scope and limitations of some recent technologies that seek to achieve these ends. Our discussion emphasizes a requirement for rational combinatorial engineering principles and the promise this approach holds for the future development of this field.
Collapse
Affiliation(s)
- Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani 333031, Rajasthan, India.
| | - Kaushik Renganaath
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani 333031, Rajasthan, India
| | - Harsh Kanodia
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani 333031, Rajasthan, India
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, United Kingdom
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani 333031, Rajasthan, India
| |
Collapse
|
7
|
de Lange O, Wolf C, Thiel P, Krüger J, Kleusch C, Kohlbacher O, Lahaye T. DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats. Nucleic Acids Res 2015; 43:10065-10080. [PMID: 26481363 DOI: 10.1093/nar.gkv1053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/14/2015] [Indexed: 05/28/2023] Open
Abstract
Transcription Activator-Like Effectors (TALEs) of Xanthomonas bacteria are programmable DNA binding proteins with unprecedented target specificity. Comparative studies into TALE repeat structure and function are hindered by the limited sequence variation among TALE repeats. More sequence-diverse TALE-like proteins are known from Ralstonia solanacearum (RipTALs) and Burkholderia rhizoxinica (Bats), but RipTAL and Bat repeats are conserved with those of TALEs around the DNA-binding residue. We study two novel marine-organism TALE-like proteins (MOrTL1 and MOrTL2), the first to date of non-terrestrial origin. We have assessed their DNA-binding properties and modelled repeat structures. We found that repeats from these proteins mediate sequence specific DNA binding conforming to the TALE code, despite low sequence similarity to TALE repeats, and with novel residues around the BSR. However, MOrTL1 repeats show greater sequence discriminating power than MOrTL2 repeats. Sequence alignments show that there are only three residues conserved between repeats of all TALE-like proteins including the two new additions. This conserved motif could prove useful as an identifier for future TALE-likes. Additionally, comparing MOrTL repeats with those of other TALE-likes suggests a common evolutionary origin for the TALEs, RipTALs and Bats.
Collapse
Affiliation(s)
- Orlando de Lange
- Department of General Genetics, Centre for Plant Molecular Biology, University of Tuebingen, Auf der Morgenstelle 32, Tuebingen, Baden-Wuerttemberg, 72076, Germany
| | - Christina Wolf
- Department of General Genetics, Centre for Plant Molecular Biology, University of Tuebingen, Auf der Morgenstelle 32, Tuebingen, Baden-Wuerttemberg, 72076, Germany
| | - Philipp Thiel
- Department of Computer Science and Centre for Bioinformatics, University of Tuebingen, Sand 14, Tuebingen, Baden-Wuerttemberg, 72076, Germany
| | - Jens Krüger
- Department of Computer Science and Centre for Bioinformatics, University of Tuebingen, Sand 14, Tuebingen, Baden-Wuerttemberg, 72076, Germany
| | | | - Oliver Kohlbacher
- Department of Computer Science and Centre for Bioinformatics, University of Tuebingen, Sand 14, Tuebingen, Baden-Wuerttemberg, 72076, Germany Quantitative Biology Centre and Faculty of Medicine, University of Tuebingen, Sand 14, Tuebingen, Baden-Wuerttemberg, 72076, Germany
| | - Thomas Lahaye
- Department of General Genetics, Centre for Plant Molecular Biology, University of Tuebingen, Auf der Morgenstelle 32, Tuebingen, Baden-Wuerttemberg, 72076, Germany
| |
Collapse
|
8
|
de Lange O, Wolf C, Thiel P, Krüger J, Kleusch C, Kohlbacher O, Lahaye T. DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats. Nucleic Acids Res 2015; 43:10065-80. [PMID: 26481363 PMCID: PMC4787788 DOI: 10.1093/nar/gkv1053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/14/2015] [Indexed: 12/24/2022] Open
Abstract
Transcription Activator-Like Effectors (TALEs) of Xanthomonas bacteria are programmable DNA binding proteins with unprecedented target specificity. Comparative studies into TALE repeat structure and function are hindered by the limited sequence variation among TALE repeats. More sequence-diverse TALE-like proteins are known from Ralstonia solanacearum (RipTALs) and Burkholderia rhizoxinica (Bats), but RipTAL and Bat repeats are conserved with those of TALEs around the DNA-binding residue. We study two novel marine-organism TALE-like proteins (MOrTL1 and MOrTL2), the first to date of non-terrestrial origin. We have assessed their DNA-binding properties and modelled repeat structures. We found that repeats from these proteins mediate sequence specific DNA binding conforming to the TALE code, despite low sequence similarity to TALE repeats, and with novel residues around the BSR. However, MOrTL1 repeats show greater sequence discriminating power than MOrTL2 repeats. Sequence alignments show that there are only three residues conserved between repeats of all TALE-like proteins including the two new additions. This conserved motif could prove useful as an identifier for future TALE-likes. Additionally, comparing MOrTL repeats with those of other TALE-likes suggests a common evolutionary origin for the TALEs, RipTALs and Bats.
Collapse
Affiliation(s)
- Orlando de Lange
- Department of General Genetics, Centre for Plant Molecular Biology, University of Tuebingen, Auf der Morgenstelle 32, Tuebingen, Baden-Wuerttemberg, 72076, Germany
| | - Christina Wolf
- Department of General Genetics, Centre for Plant Molecular Biology, University of Tuebingen, Auf der Morgenstelle 32, Tuebingen, Baden-Wuerttemberg, 72076, Germany
| | - Philipp Thiel
- Department of Computer Science and Centre for Bioinformatics, University of Tuebingen, Sand 14, Tuebingen, Baden-Wuerttemberg, 72076, Germany
| | - Jens Krüger
- Department of Computer Science and Centre for Bioinformatics, University of Tuebingen, Sand 14, Tuebingen, Baden-Wuerttemberg, 72076, Germany
| | | | - Oliver Kohlbacher
- Department of Computer Science and Centre for Bioinformatics, University of Tuebingen, Sand 14, Tuebingen, Baden-Wuerttemberg, 72076, Germany Quantitative Biology Centre and Faculty of Medicine, University of Tuebingen, Sand 14, Tuebingen, Baden-Wuerttemberg, 72076, Germany
| | - Thomas Lahaye
- Department of General Genetics, Centre for Plant Molecular Biology, University of Tuebingen, Auf der Morgenstelle 32, Tuebingen, Baden-Wuerttemberg, 72076, Germany
| |
Collapse
|
9
|
Stella S, Molina R, López-Méndez B, Juillerat A, Bertonati C, Daboussi F, Campos-Olivas R, Duchateau P, Montoya G. BuD, a helix-loop-helix DNA-binding domain for genome modification. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2042-52. [PMID: 25004980 PMCID: PMC4089491 DOI: 10.1107/s1399004714011183] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/15/2014] [Indexed: 12/30/2022]
Abstract
DNA editing offers new possibilities in synthetic biology and biomedicine for modulation or modification of cellular functions to organisms. However, inaccuracy in this process may lead to genome damage. To address this important problem, a strategy allowing specific gene modification has been achieved through the addition, removal or exchange of DNA sequences using customized proteins and the endogenous DNA-repair machinery. Therefore, the engineering of specific protein-DNA interactions in protein scaffolds is key to providing `toolkits' for precise genome modification or regulation of gene expression. In a search for putative DNA-binding domains, BurrH, a protein that recognizes a 19 bp DNA target, was identified. Here, its apo and DNA-bound crystal structures are reported, revealing a central region containing 19 repeats of a helix-loop-helix modular domain (BurrH domain; BuD), which identifies the DNA target by a single residue-to-nucleotide code, thus facilitating its redesign for gene targeting. New DNA-binding specificities have been engineered in this template, showing that BuD-derived nucleases (BuDNs) induce high levels of gene targeting in a locus of the human haemoglobin β (HBB) gene close to mutations responsible for sickle-cell anaemia. Hence, the unique combination of high efficiency and specificity of the BuD arrays can push forward diverse genome-modification approaches for cell or organism redesign, opening new avenues for gene editing.
Collapse
Affiliation(s)
- Stefano Stella
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Structural Biology Group, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Rafael Molina
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Blanca López-Méndez
- Spectroscopy and NMR Unit, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | | | | | | | - Ramon Campos-Olivas
- Spectroscopy and NMR Unit, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | | | - Guillermo Montoya
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Structural Biology Group, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
10
|
Lange O, Binder A, Lahaye T. From dead leaf, to new life:
TAL
effectors as tools for synthetic biology. THE PLANT JOURNAL 2014; 78:753-771. [PMID: 24602153 DOI: 10.1111/tpj.12431] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
- Orlando Lange
- Department of General Genetics Centre for Plant Molecular Biology Eberhard‐Karls‐University Tübingen Auf der Morgenstelle 32 72076 Tübingen Germany
| | - Andreas Binder
- Genetics Faculty of Biology I University of Munich Großhaderner Straße 2‐4 82152 Martinsried Germany
| | - Thomas Lahaye
- Department of General Genetics Centre for Plant Molecular Biology Eberhard‐Karls‐University Tübingen Auf der Morgenstelle 32 72076 Tübingen Germany
| |
Collapse
|
11
|
de Lange O, Wolf C, Dietze J, Elsaesser J, Morbitzer R, Lahaye T. Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain. Nucleic Acids Res 2014; 42:7436-49. [PMID: 24792163 PMCID: PMC4066763 DOI: 10.1093/nar/gku329] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The tandem repeats of transcription activator like effectors (TALEs) mediate sequence-specific DNA binding using a simple code. Naturally, TALEs are injected by Xanthomonas bacteria into plant cells to manipulate the host transcriptome. In the laboratory TALE DNA binding domains are reprogrammed and used to target a fused functional domain to a genomic locus of choice. Research into the natural diversity of TALE-like proteins may provide resources for the further improvement of current TALE technology. Here we describe TALE-like proteins from the endosymbiotic bacterium Burkholderia rhizoxinica, termed Bat proteins. Bat repeat domains mediate sequence-specific DNA binding with the same code as TALEs, despite less than 40% sequence identity. We show that Bat proteins can be adapted for use as transcription factors and nucleases and that sequence preferences can be reprogrammed. Unlike TALEs, the core repeats of each Bat protein are highly polymorphic. This feature allowed us to explore alternative strategies for the design of custom Bat repeat arrays, providing novel insights into the functional relevance of non-RVD residues. The Bat proteins offer fertile grounds for research into the creation of improved programmable DNA-binding proteins and comparative insights into TALE-like evolution.
Collapse
Affiliation(s)
- Orlando de Lange
- Genetics, Department of Biology I, Ludwig-Maximilians-University Munich, Martinsried, Bavaria, 82152, Germany
| | - Christina Wolf
- Genetics, Department of Biology I, Ludwig-Maximilians-University Munich, Martinsried, Bavaria, 82152, Germany
| | - Jörn Dietze
- Genetics, Department of Biology I, Ludwig-Maximilians-University Munich, Martinsried, Bavaria, 82152, Germany
| | - Janett Elsaesser
- Genetics, Department of Biology I, Ludwig-Maximilians-University Munich, Martinsried, Bavaria, 82152, Germany
| | - Robert Morbitzer
- Genetics, Department of Biology I, Ludwig-Maximilians-University Munich, Martinsried, Bavaria, 82152, Germany
| | - Thomas Lahaye
- Genetics, Department of Biology I, Ludwig-Maximilians-University Munich, Martinsried, Bavaria, 82152, Germany
| |
Collapse
|