1
|
Peng C, Cheng Y, Ma M, Chen Q, Duan Y, Liu S, Cheng H, Yang H, Huang J, Bu W, Shi C, Wu X, Chen J, Zheng R, Liu Z, Ji Z, Wang J, Huang X, Wang P, Sha W, Ge B, Wang L. Mycobacterium tuberculosis suppresses host antimicrobial peptides by dehydrogenating L-alanine. Nat Commun 2024; 15:4216. [PMID: 38760394 PMCID: PMC11101664 DOI: 10.1038/s41467-024-48588-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
Antimicrobial peptides (AMPs), ancient scavengers of bacteria, are very poorly induced in macrophages infected by Mycobacterium tuberculosis (M. tuberculosis), but the underlying mechanism remains unknown. Here, we report that L-alanine interacts with PRSS1 and unfreezes the inhibitory effect of PRSS1 on the activation of NF-κB pathway to induce the expression of AMPs, but mycobacterial alanine dehydrogenase (Ald) Rv2780 hydrolyzes L-alanine and reduces the level of L-alanine in macrophages, thereby suppressing the expression of AMPs to facilitate survival of mycobacteria. Mechanistically, PRSS1 associates with TAK1 and disruptes the formation of TAK1/TAB1 complex to inhibit TAK1-mediated activation of NF-κB pathway, but interaction of L-alanine with PRSS1, disables PRSS1-mediated impairment on TAK1/TAB1 complex formation, thereby triggering the activation of NF-κB pathway to induce expression of AMPs. Moreover, deletion of antimicrobial peptide gene β-defensin 4 (Defb4) impairs the virulence by Rv2780 during infection in mice. Both L-alanine and the Rv2780 inhibitor, GWP-042, exhibits excellent inhibitory activity against M. tuberculosis infection in vivo. Our findings identify a previously unrecognized mechanism that M. tuberculosis uses its own alanine dehydrogenase to suppress host immunity, and provide insights relevant to the development of effective immunomodulators that target M. tuberculosis.
Collapse
Affiliation(s)
- Cheng Peng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Yuanna Cheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Mingtong Ma
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Qiu Chen
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Yongjia Duan
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Shanshan Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Hongyu Cheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Hua Yang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jingping Huang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Wenyi Bu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Chenyue Shi
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Xiangyang Wu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianxia Chen
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ruijuan Zheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhonghua Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhe Ji
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Jie Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaochen Huang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peng Wang
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Sha
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Baoxue Ge
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China.
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Lin Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China.
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Bigi MM, Blanco FC, Araújo FR, Thacker TC, Zumárraga MJ, Cataldi AA, Soria MA, Bigi F. Polymorphisms of 20 regulatory proteins between Mycobacterium tuberculosis and Mycobacterium bovis. Microbiol Immunol 2017; 60:552-60. [PMID: 27427512 DOI: 10.1111/1348-0421.12402] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/21/2016] [Accepted: 07/13/2016] [Indexed: 12/21/2022]
Abstract
Mycobacterium tuberculosis and Mycobacterium bovis are responsible for tuberculosis in humans and animals, respectively. Both species are closely related and belong to the Mycobacterium tuberculosis complex (MTC). M. tuberculosis is the most ancient species from which M. bovis and other members of the MTC evolved. The genome of M. bovis is over >99.95% identical to that of M. tuberculosis but with seven deletions ranging in size from 1 to 12.7 kb. In addition, 1200 single nucleotide mutations in coding regions distinguish M. bovis from M. tuberculosis. In the present study, we assessed 75 M. tuberculosis genomes and 23 M. bovis genomes to identify non-synonymous mutations in 202 coding sequences of regulatory genes between both species. We identified species-specific variants in 20 regulatory proteins and confirmed differential expression of hypoxia-related genes between M. bovis and M. tuberculosis.
Collapse
Affiliation(s)
- María M Bigi
- School of Agronomy, UBA, Buenos Aires 1417, Argentina
| | - Federico Carlos Blanco
- Biotechnology Institute, National Institute of Agricultural Technology (INTA), Hurlingham 1686, Argentina
| | | | - Tyler C Thacker
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, 1920 Dayton Ave, Ames, Iowa 50010, USA
| | - Martín J Zumárraga
- Biotechnology Institute, National Institute of Agricultural Technology (INTA), Hurlingham 1686, Argentina
| | - Angel A Cataldi
- Biotechnology Institute, National Institute of Agricultural Technology (INTA), Hurlingham 1686, Argentina
| | | | - Fabiana Bigi
- Biotechnology Institute, National Institute of Agricultural Technology (INTA), Hurlingham 1686, Argentina
| |
Collapse
|
3
|
Dey A, Shree S, Pandey SK, Tripathi RP, Ramachandran R. Crystal Structure of Mycobacterium tuberculosis H37Rv AldR (Rv2779c), a Regulator of the ald Gene: DNA BINDING AND IDENTIFICATION OF SMALL MOLECULE INHIBITORS. J Biol Chem 2016; 291:11967-80. [PMID: 27006398 DOI: 10.1074/jbc.m115.700484] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Indexed: 11/06/2022] Open
Abstract
Here we report the crystal structure of M. tuberculosis AldR (Rv2779c) showing that the N-terminal DNA-binding domains are swapped, forming a dimer, and four dimers are assembled into an octamer through crystal symmetry. The C-terminal domain is involved in oligomeric interactions that stabilize the oligomer, and it contains the effector-binding sites. The latter sites are 30-60% larger compared with homologs like MtbFFRP (Rv3291c) and can consequently accommodate larger molecules. MtbAldR binds to the region upstream to the ald gene that is highly up-regulated in nutrient-starved tuberculosis models and codes for l-alanine dehydrogenase (MtbAld; Rv2780). Further, the MtbAldR-DNA complex is inhibited upon binding of Ala, Tyr, Trp and Asp to the protein. Studies involving a ligand-binding site G131T mutant show that the mutant forms a DNA complex that cannot be inhibited by adding the amino acids. Comparative studies suggest that binding of the amino acids changes the relative spatial disposition of the DNA-binding domains and thereby disrupt the protein-DNA complex. Finally, we identified small molecules, including a tetrahydroquinoline carbonitrile derivative (S010-0261), that inhibit the MtbAldR-DNA complex. The latter molecules represent the very first inhibitors of a feast/famine regulatory protein from any source and set the stage for exploring MtbAldR as a potential anti-tuberculosis target.
Collapse
Affiliation(s)
- Abhishek Dey
- From the Molecular and Structural Biology Division and
| | - Sonal Shree
- From the Molecular and Structural Biology Division and
| | - Sarvesh Kumar Pandey
- the Medicinal and Process Chemistry Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, India
| | - Rama Pati Tripathi
- the Medicinal and Process Chemistry Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, India
| | | |
Collapse
|
4
|
Regulation Mechanism of the ald Gene Encoding Alanine Dehydrogenase in Mycobacterium smegmatis and Mycobacterium tuberculosis by the Lrp/AsnC Family Regulator AldR. J Bacteriol 2015. [PMID: 26195594 DOI: 10.1128/jb.00453-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In the presence of alanine, AldR, which belongs to the Lrp/AsnC family of transcriptional regulators and regulates ald encoding alanine dehydrogenase in Mycobacterium smegmatis, changes its quaternary structure from a homodimer to an octamer with an open-ring conformation. Four AldR-binding sites (O2, O1, O4, and O3) with a consensus sequence of GA/T-N2-NWW/WWN-N2-A/TC were identified upstream of the M. smegmatis ald gene by means of DNase I footprinting analysis. O2, O1, and O4 are required for the induction of ald expression by alanine, while O3 is directly involved in the repression of ald expression. In addition to O3, both O1 and O4 are also necessary for full repression of ald expression in the absence of alanine, due to cooperative binding of AldR dimers to O1, O4, and O3. Binding of a molecule of the AldR octamer to the ald control region was demonstrated to require two AldR-binding sites separated by three helical turns between their centers and one additional binding site that is in phase with the two AldR-binding sites. The cooperative binding of AldR dimers to DNA requires three AldR-binding sites that are aligned with a periodicity of three helical turns. The aldR gene is negatively autoregulated independently of alanine. Comparative analysis of ald expression of M. smegmatis and Mycobacterium tuberculosis in conjunction with sequence analysis of both ald control regions led us to suggest that the expression of the ald genes in both mycobacterial species is regulated by the same mechanism. IMPORTANCE In mycobacteria, alanine dehydrogenase (Ald) is the enzyme required both to utilize alanine as a nitrogen source and to grow under hypoxic conditions by maintaining the redox state of the NADH/NAD(+) pool. Expression of the ald gene was reported to be regulated by the AldR regulator that belongs to the Lrp/AsnC (feast/famine) family, but the underlying mechanism was unknown. This study revealed the regulation mechanism of ald in Mycobacterium smegmatis and Mycobacterium tuberculosis. Furthermore, a generalized arrangement pattern of cis-acting regulatory sites for Lrp/AsnC (feast/famine) family regulators is suggested in this study.
Collapse
|