1
|
Central Carbon Metabolism, Sodium-Motive Electron Transfer, and Ammonium Formation by the Vaginal Pathogen Prevotella bivia. Int J Mol Sci 2021; 22:ijms222111925. [PMID: 34769356 PMCID: PMC8585091 DOI: 10.3390/ijms222111925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Replacement of the Lactobacillus dominated vaginal microbiome by a mixed bacterial population including Prevotella bivia is associated with bacterial vaginosis (BV). To understand the impact of P. bivia on this microbiome, its growth requirements and mode of energy production were studied. Anoxic growth with glucose depended on CO2 and resulted in succinate formation, indicating phosphoenolpyruvate carboxylation and fumarate reduction as critical steps. The reductive branch of fermentation relied on two highly active, membrane-bound enzymes, namely the quinol:fumarate reductase (QFR) and Na+-translocating NADH:quinone oxidoreductase (NQR). Both enzymes were characterized by activity measurements, in-gel fluorography, and VIS difference spectroscopy, and the Na+-dependent build-up of a transmembrane voltage was demonstrated. NQR is a potential drug target for BV treatment since it is neither found in humans nor in Lactobacillus. In P. bivia, the highly active enzymes L-asparaginase and aspartate ammonia lyase catalyze the conversion of asparagine to the electron acceptor fumarate. However, the by-product ammonium is highly toxic. It has been proposed that P. bivia depends on ammonium-utilizing Gardnerella vaginalis, another typical pathogen associated with BV, and provides key nutrients to it. The product pattern of P. bivia growing on glucose in the presence of mixed amino acids substantiates this notion.
Collapse
|
2
|
A Sodium-Translocating Module Linking Succinate Production to Formation of Membrane Potential in Prevotella bryantii. Appl Environ Microbiol 2021; 87:e0121121. [PMID: 34469197 PMCID: PMC8516057 DOI: 10.1128/aem.01211-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Ruminants such as cattle and sheep depend on the breakdown of carbohydrates from plant-based feedstuff, which is accomplished by the microbial community in the rumen. Roughly 40% of the members of the rumen microbiota belong to the family Prevotellaceae, which ferments sugars to organic acids such as acetate, propionate, and succinate. These substrates are important nutrients for the ruminant. In a metaproteome analysis of the rumen of cattle, proteins that are homologous to the Na+-translocating NADH:quinone oxidoreductase (NQR) and the quinone:fumarate reductase (QFR) were identified in different Prevotella species. Here, we show that fumarate reduction to succinate in anaerobically growing Prevotella bryantii is coupled to chemiosmotic energy conservation by a supercomplex composed of NQR and QFR. This sodium-translocating NADH:fumarate oxidoreductase (SNFR) supercomplex was enriched by blue native PAGE (BN-PAGE) and characterized by in-gel enzyme activity staining and mass spectrometry. High NADH oxidation (850 nmol min-1 mg-1), quinone reduction (490 nmol min-1 mg-1), and fumarate reduction (1,200 nmol min-1 mg-1) activities, together with high expression levels, demonstrate that SNFR represents a charge-separating unit in P. bryantii. Absorption spectroscopy of SNFR exposed to different substrates revealed intramolecular electron transfer from the flavin adenine dinucleotide (FAD) cofactor in NQR to heme b cofactors in QFR. SNFR catalyzed the stoichiometric conversion of NADH and fumarate to NAD+ and succinate. We propose that the regeneration of NAD+ in P. bryantii is intimately linked to the buildup of an electrochemical gradient which powers ATP synthesis by electron transport phosphorylation. IMPORTANCE Feeding strategies for ruminants are designed to optimize nutrient efficiency for animals and to prevent energy losses like enhanced methane production. Key to this are the fermentative reactions of the rumen microbiota, dominated by Prevotella spp. We show that succinate formation by P. bryantii is coupled to NADH oxidation and sodium gradient formation by a newly described supercomplex consisting of Na+-translocating NADH:quinone oxidoreductase (NQR) and fumarate reductase (QFR), representing the sodium-translocating NADH:fumarate oxidoreductase (SNFR) supercomplex. SNFR is the major charge-separating module, generating an electrochemical sodium gradient in P. bryantii. Our findings offer clues to the observation that use of fumarate as feed additive does not significantly increase succinate production, or decrease methanogenesis, by the microbial community in the rumen.
Collapse
|
3
|
Schleicher L, Muras V, Claussen B, Pfannstiel J, Blombach B, Dibrov P, Fritz G, Steuber J. Vibrio natriegens as Host for Expression of Multisubunit Membrane Protein Complexes. Front Microbiol 2018; 9:2537. [PMID: 30410475 PMCID: PMC6209661 DOI: 10.3389/fmicb.2018.02537] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/04/2018] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli is a convenient host for the expression of proteins, but the heterologous production of large membrane protein complexes often is hampered by the lack of specific accessory genes required for membrane insertion or cofactor assembly. In this study we introduce the non-pathogenic and fast-growing Vibrio natriegens as a suitable expression host for membrane-bound proteins from Vibrio cholerae. We achieved production of the primary Na+ pump, the NADH:quinone oxidoreductase (NQR), from V. cholerae in an active state, as indicated by increased overall NADH:quinone oxidoreduction activity of membranes from the transformed V. natriegens, and the sensitivity toward Ag+, a specific inhibitor of the NQR. Complete assembly of V. cholerae NQR expressed in V. natriegens was demonstrated by BN PAGE followed by activity staining. The secondary transport system Mrp from V. cholerae, another membrane-bound multisubunit complex, was also produced in V. natriegens in a functional state, as demonstrated by in vivo Li+ transport. V. natriegens is a promising expression host for the production of membrane protein complexes from Gram-negative pathogens.
Collapse
Affiliation(s)
- Lena Schleicher
- Institute of Microbiology, University of Hohenheim, Stuttgart, Germany
| | - Valentin Muras
- Institute of Microbiology, University of Hohenheim, Stuttgart, Germany
| | - Björn Claussen
- Institute of Microbiology, University of Hohenheim, Stuttgart, Germany
| | - Jens Pfannstiel
- Mass Spectrometry Core Facility, University of Hohenheim, Stuttgart, Germany
| | - Bastian Blombach
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Pavel Dibrov
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Günter Fritz
- Institute of Microbiology, University of Hohenheim, Stuttgart, Germany.,Institute for Neuropathology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Julia Steuber
- Institute of Microbiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
4
|
Buttet GF, Willemin MS, Hamelin R, Rupakula A, Maillard J. The Membrane-Bound C Subunit of Reductive Dehalogenases: Topology Analysis and Reconstitution of the FMN-Binding Domain of PceC. Front Microbiol 2018; 9:755. [PMID: 29740408 PMCID: PMC5928378 DOI: 10.3389/fmicb.2018.00755] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
Organohalide respiration (OHR) is the energy metabolism of anaerobic bacteria able to use halogenated organic compounds as terminal electron acceptors. While the terminal enzymes in OHR, so-called reductive dehalogenases, are well-characterized, the identity of proteins potentially involved in electron transfer to the terminal enzymes remains elusive. Among the accessory genes identified in OHR gene clusters, the C subunit (rdhC) could well code for the missing redox protein between the quinol pool and the reductive dehalogenase, although it was initially proposed to act as transcriptional regulator. RdhC sequences are characterized by the presence of multiple transmembrane segments, a flavin mononucleotide (FMN) binding motif and two conserved CX3CP motifs. Based on these features, we propose a curated selection of RdhC proteins identified in general sequence databases. Beside the Firmicutes from which RdhC sequences were initially identified, the identified sequences belong to three additional phyla, the Chloroflexi, the Proteobacteria, and the Bacteriodetes. The diversity of RdhC sequences mostly respects the phylogenetic distribution, suggesting that rdhC genes emerged relatively early in the evolution of the OHR metabolism. PceC, the C subunit of the tetrachloroethene (PCE) reductive dehalogenase is encoded by the conserved pceABCT gene cluster identified in Dehalobacter restrictus PER-K23 and in several strains of Desulfitobacterium hafniense. Surfaceome analysis of D. restrictus cells confirmed the predicted topology of the FMN-binding domain (FBD) of PceC that is the exocytoplasmic face of the membrane. Starting from inclusion bodies of a recombinant FBD protein, strategies for successful assembly of the FMN cofactor and refolding were achieved with the use of the flavin-trafficking protein from D. hafniense TCE1. Mass spectrometry analysis and site-directed mutagenesis of rFBD revealed that threonine-168 of PceC is binding FMN covalently. Our results suggest that PceC, and more generally RdhC proteins, may play a role in electron transfer in the metabolism of OHR.
Collapse
Affiliation(s)
- Géraldine F Buttet
- Laboratory for Environmental Biotechnology, Institute for Environmental Engineering, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
| | - Mathilde S Willemin
- Laboratory for Environmental Biotechnology, Institute for Environmental Engineering, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
| | - Romain Hamelin
- Protein Core Facility, Faculty of Life Sciences, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
| | - Aamani Rupakula
- Laboratory for Environmental Biotechnology, Institute for Environmental Engineering, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
| | - Julien Maillard
- Laboratory for Environmental Biotechnology, Institute for Environmental Engineering, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Borshchevskiy V, Round E, Bertsova Y, Polovinkin V, Gushchin I, Ishchenko A, Kovalev K, Mishin A, Kachalova G, Popov A, Bogachev A, Gordeliy V. Structural and functional investigation of flavin binding center of the NqrC subunit of sodium-translocating NADH:quinone oxidoreductase from Vibrio harveyi. PLoS One 2015; 10:e0118548. [PMID: 25734798 PMCID: PMC4348036 DOI: 10.1371/journal.pone.0118548] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/17/2015] [Indexed: 12/20/2022] Open
Abstract
Na+-translocating NADH:quinone oxidoreductase (NQR) is a redox-driven sodium pump operating in the respiratory chain of various bacteria, including pathogenic species. The enzyme has a unique set of redox active prosthetic groups, which includes two covalently bound flavin mononucleotide (FMN) residues attached to threonine residues in subunits NqrB and NqrC. The reason of FMN covalent bonding in the subunits has not been established yet. In the current work, binding of free FMN to the apo-form of NqrC from Vibrio harveyi was studied showing very low affinity of NqrC to FMN in the absence of its covalent bonding. To study structural aspects of flavin binding in NqrC, its holo-form was crystallized and its 3D structure was solved at 1.56 Å resolution. It was found that the isoalloxazine moiety of the FMN residue is buried in a hydrophobic cavity and that its pyrimidine ring is squeezed between hydrophobic amino acid residues while its benzene ring is extended from the protein surroundings. This structure of the flavin-binding pocket appears to provide flexibility of the benzene ring, which can help the FMN residue to take the bended conformation and thus to stabilize the one-electron reduced form of the prosthetic group. These properties may also lead to relatively weak noncovalent binding of the flavin. This fact along with periplasmic location of the FMN-binding domains in the vast majority of NqrC-like proteins may explain the necessity of the covalent bonding of this prosthetic group to prevent its loss to the external medium.
Collapse
Affiliation(s)
- Valentin Borshchevskiy
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Research Centre Jülich GmbH, Jülich, Germany
| | - Ekaterina Round
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Research Centre Jülich GmbH, Jülich, Germany
| | - Yulia Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vitaly Polovinkin
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Research Centre Jülich GmbH, Jülich, Germany
| | - Ivan Gushchin
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Research Centre Jülich GmbH, Jülich, Germany
| | - Andrii Ishchenko
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Research Centre Jülich GmbH, Jülich, Germany
| | - Kirill Kovalev
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - Alexey Mishin
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - Galina Kachalova
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Alexander Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- * E-mail: (AB); (VG)
| | - Valentin Gordeliy
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Research Centre Jülich GmbH, Jülich, Germany
- Univ. Grenoble Alpes, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
- * E-mail: (AB); (VG)
| |
Collapse
|
6
|
Structure of the V. cholerae Na+-pumping NADH:quinone oxidoreductase. Nature 2015; 516:62-7. [PMID: 25471880 DOI: 10.1038/nature14003] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/24/2014] [Indexed: 11/08/2022]
Abstract
NADH oxidation in the respiratory chain is coupled to ion translocation across the membrane to build up an electrochemical gradient. The sodium-translocating NADH:quinone oxidoreductase (Na(+)-NQR), a membrane protein complex widespread among pathogenic bacteria, consists of six subunits, NqrA, B, C, D, E and F. To our knowledge, no structural information on the Na(+)-NQR complex has been available until now. Here we present the crystal structure of the Na(+)-NQR complex at 3.5 Å resolution. The arrangement of cofactors both at the cytoplasmic and the periplasmic side of the complex, together with a hitherto unknown iron centre in the midst of the membrane-embedded part, reveals an electron transfer pathway from the NADH-oxidizing cytoplasmic NqrF subunit across the membrane to the periplasmic NqrC, and back to the quinone reduction site on NqrA located in the cytoplasm. A sodium channel was localized in subunit NqrB, which represents the largest membrane subunit of the Na(+)-NQR and is structurally related to urea and ammonia transporters. On the basis of the structure we propose a mechanism of redox-driven Na(+) translocation where the change in redox state of the flavin mononucleotide cofactor in NqrB triggers the transport of Na(+) through the observed channel.
Collapse
|