1
|
Jos S, Poulose R, Kambaru A, Gogoi H, Dalavaikodihalli Nanjaiah N, Padmanabhan B, Mehta B, Padavattan S. Tau-S214 Phosphorylation Inhibits Fyn Kinase Interaction and Increases the Decay Time of NMDAR-mediated Current. J Mol Biol 2024; 436:168445. [PMID: 38218365 DOI: 10.1016/j.jmb.2024.168445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
Fyn kinase SH3 domain interaction with PXXP motif in the Tau protein is implicated in AD pathology and is central to NMDAR function. Among seven PXXP motifs localized in proline-rich domain of Tau protein, tandem 5th and 6th PXXP motifs are critical to Fyn-SH3 domain interaction. Here, we report the crystal structure of Fyn-SH3 -Tau (207-221) peptide consisting of 5th and 6th PXXP motif complex to 1.01 Å resolution. Among five AD-specific phosphorylation sites encompassing the 5th and 6th PXXP motifs, only S214 residue showed interaction with SH3 domain. Biophysical studies showed that Tau (207-221) with S214-phosphorylation (pS214) inhibits its interaction with Fyn-SH3 domain. The individual administration of Tau (207-221) with/without pS214 peptides to a single neuron increased the decay time of evoked NMDA current response. Recordings of spontaneous NMDA EPSCs at +40 mV indicate an increase in frequency and amplitude of events for the Tau (207-221) peptide. Conversely, the Tau (207-221) with pS214 peptide exhibited a noteworthy amplitude increase alongside a prolonged decay time. These outcomes underscore the distinctive modalities of action associated with each peptide in the study. Overall, this study provides insights into how Tau (207-221) with/without pS214 affects the molecular framework of NMDAR signaling, indicating its involvement in Tau-related pathogenesis.
Collapse
Affiliation(s)
- Sneha Jos
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Roshni Poulose
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Archanalakshmi Kambaru
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Hemanga Gogoi
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | | | - Balasundaram Padmanabhan
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Bhupesh Mehta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore 560029, India.
| | - Sivaraman Padavattan
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore 560029, India.
| |
Collapse
|
2
|
Mehrabipour M, Jasemi NSK, Dvorsky R, Ahmadian MR. A Systematic Compilation of Human SH3 Domains: A Versatile Superfamily in Cellular Signaling. Cells 2023; 12:2054. [PMID: 37626864 PMCID: PMC10453029 DOI: 10.3390/cells12162054] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
SRC homology 3 (SH3) domains are fundamental modules that enable the assembly of protein complexes through physical interactions with a pool of proline-rich/noncanonical motifs from partner proteins. They are widely studied modular building blocks across all five kingdoms of life and viruses, mediating various biological processes. The SH3 domains are also implicated in the development of human diseases, such as cancer, leukemia, osteoporosis, Alzheimer's disease, and various infections. A database search of the human proteome reveals the existence of 298 SH3 domains in 221 SH3 domain-containing proteins (SH3DCPs), ranging from 13 to 720 kilodaltons. A phylogenetic analysis of human SH3DCPs based on their multi-domain architecture seems to be the most practical way to classify them functionally, with regard to various physiological pathways. This review further summarizes the achievements made in the classification of SH3 domain functions, their binding specificity, and their significance for various diseases when exploiting SH3 protein modular interactions as drug targets.
Collapse
Affiliation(s)
- Mehrnaz Mehrabipour
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Neda S. Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
- Center for Interdisciplinary Biosciences, P. J. Šafárik University, 040 01 Košice, Slovakia
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| |
Collapse
|
3
|
Park R, Ongpipattanakul C, Nair SK, Bowers AA, Kuhlman B. Designer installation of a substrate recruitment domain to tailor enzyme specificity. Nat Chem Biol 2023; 19:460-467. [PMID: 36509904 PMCID: PMC10065947 DOI: 10.1038/s41589-022-01206-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 10/10/2022] [Indexed: 12/14/2022]
Abstract
Promiscuous enzymes that modify peptides and proteins are powerful tools for labeling biomolecules; however, directing these modifications to desired substrates can be challenging. Here, we use computational interface design to install a substrate recognition domain adjacent to the active site of a promiscuous enzyme, catechol O-methyltransferase. This design approach effectively decouples substrate recognition from the site of catalysis and promotes modification of peptides recognized by the recruitment domain. We determined the crystal structure of this novel multidomain enzyme, SH3-588, which shows that it closely matches our design. SH3-588 methylates directed peptides with catalytic efficiencies exceeding the wild-type enzyme by over 1,000-fold, whereas peptides lacking the directing recognition sequence do not display enhanced efficiencies. In competition experiments, the designer enzyme preferentially modifies directed substrates over undirected substrates, suggesting that we can use designed recruitment domains to direct post-translational modifications to specific sequence motifs on target proteins in complex multisubstrate environments.
Collapse
Affiliation(s)
- Rodney Park
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- School of Pharmacy, University of California San Francisco, San Francisco, CA, USA
| | - Satish K Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Albert A Bowers
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Gavira JA, Cámara-Artigas A, Neira JL, Torres de Pinedo JM, Sánchez P, Ortega E, Martinez-Rodríguez S. Structural insights into choline-O-sulfatase reveal the molecular determinants for ligand binding. Acta Crystallogr D Struct Biol 2022; 78:669-682. [PMID: 35503214 PMCID: PMC9063841 DOI: 10.1107/s2059798322003709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
Choline-O-sulfatase (COSe; EC 3.1.6.6) is a member of the alkaline phosphatase (AP) superfamily, and its natural function is to hydrolyze choline-O-sulfate into choline and sulfate. Despite its natural function, the major interest in this enzyme resides in the landmark catalytic/substrate promiscuity of sulfatases, which has led to attention in the biotechnological field due to their potential in protein engineering. In this work, an in-depth structural analysis of wild-type Sinorhizobium (Ensifer) meliloti COSe (SmeCOSe) and its C54S active-site mutant is reported. The binding mode of this AP superfamily member to both products of the reaction (sulfate and choline) and to a substrate-like compound are shown for the first time. The structures further confirm the importance of the C-terminal extension of the enzyme in becoming part of the active site and participating in enzyme activity through dynamic intra-subunit and inter-subunit hydrogen bonds (Asn146A-Asp500B-Asn498B). These residues act as the `gatekeeper' responsible for the open/closed conformations of the enzyme, in addition to assisting in ligand binding through the rearrangement of Leu499 (with a movement of approximately 5 Å). Trp129 and His145 clamp the quaternary ammonium moiety of choline and also connect the catalytic cleft to the C-terminus of an adjacent protomer. The structural information reported here contrasts with the proposed role of conformational dynamics in promoting the enzymatic catalytic proficiency of an enzyme.
Collapse
Affiliation(s)
- Jose Antonio Gavira
- Laboratorio de Estudios Cristalográficos, CSIC, Armilla, 18100 Granada, Spain
| | - Ana Cámara-Artigas
- Department of Chemistry and Physics, University of Almería, Agrifood Campus of International Excellence (ceiA3), Research Centre for Agricultural and Food Biotechnology (BITAL), Carretera de Sacramento s/n, Almería, 04120, Spain
| | - Jose Luis Neira
- IDIBE, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR–CSIC–BIFI and GBsC–CSIC–BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Jesús M. Torres de Pinedo
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, 18071 Granada, Spain
| | - Pilar Sánchez
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, 18071 Granada, Spain
| | - Esperanza Ortega
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, 18071 Granada, Spain
| | - Sergio Martinez-Rodríguez
- Laboratorio de Estudios Cristalográficos, CSIC, Armilla, 18100 Granada, Spain
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
5
|
Martinez JC, Castillo F, Ruiz-Sanz J, Murciano-Calles J, Camara-Artigas A, Luque I. Understanding binding affinity and specificity of modular protein domains: A focus in ligand design for the polyproline-binding families. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 130:161-188. [PMID: 35534107 DOI: 10.1016/bs.apcsb.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Within the modular protein domains there are five families that recognize proline-rich sequences: SH3, WW, EVH1, GYF and UEV domains. This chapter reviews the main strategies developed for the design of ligands for these families, including peptides, peptidomimetics and drugs. We also describe some studies aimed to understand the molecular reasons responsible for the intrinsic affinity and specificity of these domains.
Collapse
Affiliation(s)
- Jose C Martinez
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain.
| | - Francisco Castillo
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Javier Ruiz-Sanz
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Javier Murciano-Calles
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Ana Camara-Artigas
- Departamento de Química Física, Universidad de Almería, Campus de Excelencia Internacional Agroalimentario ceiA3 y CIAMBITAL, Almeria, Spain
| | - Irene Luque
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| |
Collapse
|
6
|
Vincenzi M, Mercurio FA, Leone M. Protein Interaction Domains: Structural Features and Drug Discovery Applications (Part 2). Curr Med Chem 2021; 28:854-892. [PMID: 31942846 DOI: 10.2174/0929867327666200114114142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Proteins present a modular organization made up of several domains. Apart from the domains playing catalytic functions, many others are crucial to recruit interactors. The latter domains can be defined as "PIDs" (Protein Interaction Domains) and are responsible for pivotal outcomes in signal transduction and a certain array of normal physiological and disease-related pathways. Targeting such PIDs with small molecules and peptides able to modulate their interaction networks, may represent a valuable route to discover novel therapeutics. OBJECTIVE This work represents a continuation of a very recent review describing PIDs able to recognize post-translationally modified peptide segments. On the contrary, the second part concerns with PIDs that interact with simple peptide sequences provided with standard amino acids. METHODS Crucial structural information on different domain subfamilies and their interactomes was gained by a wide search in different online available databases (including the PDB (Protein Data Bank), the Pfam (Protein family), and the SMART (Simple Modular Architecture Research Tool)). Pubmed was also searched to explore the most recent literature related to the topic. RESULTS AND CONCLUSION PIDs are multifaceted: they have all diverse structural features and can recognize several consensus sequences. PIDs can be linked to different diseases onset and progression, like cancer or viral infections and find applications in the personalized medicine field. Many efforts have been centered on peptide/peptidomimetic inhibitors of PIDs mediated interactions but much more work needs to be conducted to improve drug-likeness and interaction affinities of identified compounds.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| |
Collapse
|
7
|
Bukowski GS, Horness RE, Thielges MC. Involvement of Local, Rapid Conformational Dynamics in Binding of Flexible Recognition Motifs. J Phys Chem B 2019; 123:8387-8396. [PMID: 31535866 DOI: 10.1021/acs.jpcb.9b07036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Flexible protein sequences populate ensembles of rapidly interconverting states differentiated by small-scale fluctuations; however, elucidating whether and how the ensembles determine function experimentally is challenged by the combined high spatial and temporal resolution needed to capture the states. We used carbon-deuterium (C-D) bond vibrations incorporated as infrared probes to characterize with residue-specific detail the heterogeneity of states adopted by proline-rich (PR) sequences and assess their involvement in recognition of Src homology 3 domains. The C-D absorption envelopes provided evidence for two or three sub-populations at all proline residues. The changes in the subpopulations induced by binding generally reflected recognition by conformational selection but depended on the residue and the state of the ligand to illuminate distinct mechanisms among the PR ligands. Notably, the spectral data indicate that greater adaptability among the states is associated with reduced recognition specificity and that perturbation to the ensemble populations contributes to differences in binding entropy. Broadly, the study quantifies rapidly interconverting ensembles with residue-specific detail and implicates them in function.
Collapse
Affiliation(s)
- Gregory S Bukowski
- Department of Chemistry , Indiana University, Bloomington , Bloomington , Indiana 47405 , United States
| | - Rachel E Horness
- Department of Chemistry , Indiana University, Bloomington , Bloomington , Indiana 47405 , United States
| | - Megan C Thielges
- Department of Chemistry , Indiana University, Bloomington , Bloomington , Indiana 47405 , United States
| |
Collapse
|
8
|
Comprehensive Analysis of the Human SH3 Domain Family Reveals a Wide Variety of Non-canonical Specificities. Structure 2017; 25:1598-1610.e3. [DOI: 10.1016/j.str.2017.07.017] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/20/2017] [Accepted: 07/28/2017] [Indexed: 01/31/2023]
|