1
|
Varese M, Guardiola S, García J, Giralt E. Enthalpy‐ versus Entropy‐Driven Molecular Recognition in the Era of Biologics. Chembiochem 2019; 20:2981-2986. [DOI: 10.1002/cbic.201900270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Monica Varese
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST) Baldiri Reixac, 10 08028 Barcelona Spain
| | - Salvador Guardiola
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST) Baldiri Reixac, 10 08028 Barcelona Spain
| | - Jesús García
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST) Baldiri Reixac, 10 08028 Barcelona Spain
| | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST) Baldiri Reixac, 10 08028 Barcelona Spain
- Department of Inorganic and Organic ChemistryUniversity of Barcelona Martí i Franquès 1–11 08028 Barcelona Spain
| |
Collapse
|
2
|
Malde AK, Hill TA, Iyer A, Fairlie DP. Crystal Structures of Protein-Bound Cyclic Peptides. Chem Rev 2019; 119:9861-9914. [DOI: 10.1021/acs.chemrev.8b00807] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alpeshkumar K. Malde
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Timothy A. Hill
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Abishek Iyer
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
3
|
Thery T, Shwaiki LN, O'Callaghan YC, O'Brien NM, Arendt EK. Antifungal activity of a de novo synthetic peptide and derivatives against fungal food contaminants. J Pept Sci 2018; 25:e3137. [PMID: 30488526 DOI: 10.1002/psc.3137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022]
Abstract
The development of novel solutions to fight microbial food contaminants rests upon two pillars, which are the development of resistant strains and consumers' desire for a reduced consumption of synthetic drugs. Natural antimicrobial peptides possess the qualities to overcome these issues. De novo synthesis of novel antifungal compounds is a major progress that has been facilitated by the identification of parameters involved in the antimicrobial activity. A 14-residue peptide named KK14, with the sequence KKFFRAWWAPRFLK-NH2 , was designed and inhibited conidial germination and fungal growth of food contaminants within the range 6.25 to 50 μg/ml and 6.25 to 100 μg/ml, respectively. The study of three analogues of the peptide highlighted the role of some residues in the structural conformation of the peptide and its antifungal activity. The substitution of a Pro residue with Arg increased the helical content of the peptide not only its antifungal activity but also its cytotoxicity. The insertion of an unnatural bulky residue β-diphenylalanine or a full d-enantiomerization overall increased the antifungal potency. The four peptides showed similar behaviour towards salt increase, heat treatment, and pH decrease. Interestingly, the denantiomer remained the most active at high pH and after proteolytic digestion. The four peptides did not present haemolytic activity up to 200 μg/ml but had different behaviours of cytotoxicity. These differences could be crucial for potential application as pharmaceutical or food preservatives.
Collapse
Affiliation(s)
- Thibaut Thery
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Laila N Shwaiki
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | | | - Nora M O'Brien
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Elke K Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
4
|
Golfetto O, Wakefield DL, Cacao EE, Avery KN, Kenyon V, Jorand R, Tobin SJ, Biswas S, Gutierrez J, Clinton R, Ma Y, Horne DA, Williams JC, Jovanović-Talisman T. A Platform To Enhance Quantitative Single Molecule Localization Microscopy. J Am Chem Soc 2018; 140:12785-12797. [PMID: 30256630 PMCID: PMC6187371 DOI: 10.1021/jacs.8b04939] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Quantitative single molecule localization microscopy (qSMLM) is a powerful approach to study in situ protein organization. However, uncertainty regarding the photophysical properties of fluorescent reporters can bias the interpretation of detected localizations and subsequent quantification. Furthermore, strategies to efficiently detect endogenous proteins are often constrained by label heterogeneity and reporter size. Here, a new surface assay for molecular isolation (SAMI) was developed for qSMLM and used to characterize photophysical properties of fluorescent proteins and dyes. SAMI-qSMLM afforded robust quantification. To efficiently detect endogenous proteins, we used fluorescent ligands that bind to a specific site on engineered antibody fragments. Both the density and nano-organization of membrane-bound epidermal growth factor receptors (EGFR, HER2, and HER3) were determined by a combination of SAMI, antibody engineering, and pair-correlation analysis. In breast cancer cell lines, we detected distinct differences in receptor density and nano-organization upon treatment with therapeutic agents. This new platform can improve molecular quantification and can be developed to study the local protein environment of intact cells.
Collapse
Affiliation(s)
- Ottavia Golfetto
- Department of Molecular Medicine , Beckman Research Institute, City of Hope , 1500 East Duarte Road , Duarte , California 91010 , United States
| | - Devin L Wakefield
- Department of Molecular Medicine , Beckman Research Institute, City of Hope , 1500 East Duarte Road , Duarte , California 91010 , United States
| | - Eliedonna E Cacao
- Department of Molecular Medicine , Beckman Research Institute, City of Hope , 1500 East Duarte Road , Duarte , California 91010 , United States
| | - Kendra N Avery
- Department of Molecular Medicine , Beckman Research Institute, City of Hope , 1500 East Duarte Road , Duarte , California 91010 , United States
| | - Victor Kenyon
- Department of Molecular Medicine , Beckman Research Institute, City of Hope , 1500 East Duarte Road , Duarte , California 91010 , United States
| | - Raphael Jorand
- Department of Molecular Medicine , Beckman Research Institute, City of Hope , 1500 East Duarte Road , Duarte , California 91010 , United States
| | - Steven J Tobin
- Department of Molecular Medicine , Beckman Research Institute, City of Hope , 1500 East Duarte Road , Duarte , California 91010 , United States
| | - Sunetra Biswas
- Department of Molecular Medicine , Beckman Research Institute, City of Hope , 1500 East Duarte Road , Duarte , California 91010 , United States
| | - Jennifer Gutierrez
- Department of Molecular Medicine , Beckman Research Institute, City of Hope , 1500 East Duarte Road , Duarte , California 91010 , United States
| | - Ronald Clinton
- Department of Molecular Medicine , Beckman Research Institute, City of Hope , 1500 East Duarte Road , Duarte , California 91010 , United States
| | - Yuelong Ma
- Department of Molecular Medicine , Beckman Research Institute, City of Hope , 1500 East Duarte Road , Duarte , California 91010 , United States
| | - David A Horne
- Department of Molecular Medicine , Beckman Research Institute, City of Hope , 1500 East Duarte Road , Duarte , California 91010 , United States
| | - John C Williams
- Department of Molecular Medicine , Beckman Research Institute, City of Hope , 1500 East Duarte Road , Duarte , California 91010 , United States
| | - Tijana Jovanović-Talisman
- Department of Molecular Medicine , Beckman Research Institute, City of Hope , 1500 East Duarte Road , Duarte , California 91010 , United States
| |
Collapse
|
5
|
King JD, Ma Y, Kuo YC, Bzymek KP, Goodstein LH, Meyer K, Moore RE, Crow D, Colcher DM, Singh G, Horne DA, Williams JC. Template-Catalyzed, Disulfide Conjugation of Monoclonal Antibodies Using a Natural Amino Acid Tag. Bioconjug Chem 2018; 29:2074-2081. [PMID: 29763554 DOI: 10.1021/acs.bioconjchem.8b00284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The high specificity and favorable pharmacological properties of monoclonal antibodies (mAbs) have prompted significant interest in re-engineering this class of molecules to add novel functionalities for enhanced therapeutic and diagnostic potential. Here, we used the high affinity, meditope-Fab interaction to template and drive the rapid, efficient, and stable site-specific formation of a disulfide bond. We demonstrate that this template-catalyzed strategy provides a consistent and reproducible means to conjugate fluorescent dyes, cytotoxins, or "click" chemistry handles to meditope-enabled mAbs (memAbs) and memFabs. More importantly, we demonstrate this covalent functionalization is achievable using natural amino acids only, opening up the opportunity to genetically encode cysteine meditope "tags" to biologics. As proof of principle, genetically encoded, cysteine meditope tags were added to the N- and/or C-termini of fluorescent proteins, nanobodies, and affibodies, each expressed in bacteria, purified to homogeneity, and efficiently conjugated to different memAbs and meFabs. We further show that multiple T-cell and Her2-targeting bispecific molecules using this strategy potently activate T-cell signaling pathways in vitro. Finally, the resulting products are highly stable as evidenced by serum stability assays (>14 d at 37 °C) and in vivo imaging of tumor xenographs. Collectively, the platform offers the opportunity to build and exchange an array of functional moieties, including protein biologics, among any cysteine memAb or Fab to rapidly create, test, and optimize stable, multifunctional biologics.
Collapse
|
6
|
Bzymek KP, Puckett JW, Zer C, Xie J, Ma Y, King JD, Goodstein LH, Avery KN, Colcher D, Singh G, Horne DA, Williams JC. Mechanically interlocked functionalization of monoclonal antibodies. Nat Commun 2018; 9:1580. [PMID: 29679060 PMCID: PMC5910394 DOI: 10.1038/s41467-018-03976-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 03/27/2018] [Indexed: 01/07/2023] Open
Abstract
Because monoclonal antibodies (mAbs) have exceptional specificity and favorable pharmacology, substantial efforts have been made to functionalize them, either with potent cytotoxins, biologics, radionuclides, or fluorescent groups for therapeutic benefit and/or use as theranostic agents. To exploit our recently discovered meditope-Fab interaction as an alternative means to efficiently functionalize mAbs, we used insights from the structure to enhance the affinity and lifetime of the interaction by four orders of magnitude. To further extend the lifetime of the complex, we created a mechanical bond by incorporating an azide on the meditope, threading the azide through the Fab, and using click chemistry to add a steric group. The mechanically interlocked, meditope-Fab complex retains antigen specificity and is capable of imaging tumors in mice. These studies indicate it is possible to "snap" functionality onto mAbs, opening the possibility of rapidly creating unique combinations of mAbs with an array of cytotoxins, biologics, and imaging agents.
Collapse
Affiliation(s)
- Krzysztof P Bzymek
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, 1710 Flower St., Duarte, CA, 91010, USA
| | - James W Puckett
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, 1710 Flower St., Duarte, CA, 91010, USA
| | - Cindy Zer
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, 1710 Flower St., Duarte, CA, 91010, USA
| | - Jun Xie
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, 1710 Flower St., Duarte, CA, 91010, USA
| | - Yuelong Ma
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, 1710 Flower St., Duarte, CA, 91010, USA
| | - Jeremy D King
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, 1710 Flower St., Duarte, CA, 91010, USA
| | - Leah H Goodstein
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, 1710 Flower St., Duarte, CA, 91010, USA
| | - Kendra N Avery
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, 1710 Flower St., Duarte, CA, 91010, USA.,Xencor, 111W. Lemon Ave., Monrovia, CA, 91016, USA
| | - David Colcher
- Department of Molecular Immunology, Beckman Research Institute of City of Hope, 1710 Flower St., Duarte, CA, 91010, USA
| | - Gagandeep Singh
- Department of Surgery, Beckman Research Institute of City of Hope, 1710 Flower St., Duarte, CA, 91010, USA
| | - David A Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, 1710 Flower St., Duarte, CA, 91010, USA
| | - John C Williams
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, 1710 Flower St., Duarte, CA, 91010, USA.
| |
Collapse
|
7
|
Bzymek KP, Ma Y, Avery KN, Horne DA, Williams JC. Meditope-Fab interaction: threading the hole. Acta Crystallogr F Struct Biol Commun 2017; 73:688-694. [PMID: 29199990 PMCID: PMC5713674 DOI: 10.1107/s2053230x17016272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/10/2017] [Indexed: 06/06/2024] Open
Abstract
Meditope, a cyclic 12-residue peptide, binds to a unique binding side between the light and heavy chains of the cetuximab Fab. In an effort to improve the affinity of the interaction, it was sought to extend the side chain of Arg8 in the meditope, a residue that is accessible from the other side of the meditope binding site, in order to increase the number of interactions. These modifications included an n-butyl and n-octyl extension as well as hydroxyl, amine and carboxyl substitutions. The atomic structures of the complexes and the binding kinetics for each modified meditope indicated that each extension threaded through the Fab `hole' and that the carboxyethylarginine substitution makes a favorable interaction with the Fab, increasing the half-life of the complex by threefold compared with the unmodified meditope. Taken together, these studies provide a basis for the design of additional modifications to enhance the overall affinity of this unique interaction.
Collapse
Affiliation(s)
- Krzysztof P. Bzymek
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, 1710 Flower Street, Duarte, CA 91101, USA
| | - Yuelong Ma
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, 1710 Flower Street, Duarte, CA 91101, USA
| | - Kendra N. Avery
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, 1710 Flower Street, Duarte, CA 91101, USA
| | - David A. Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, 1710 Flower Street, Duarte, CA 91101, USA
| | - John C. Williams
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, 1710 Flower Street, Duarte, CA 91101, USA
| |
Collapse
|