1
|
Wang L, Chen W, Zhang C, Xie X, Huang F, Chen M, Mao W, Yu N, Wei Q, Ma L, Li Z. Molecular mechanism for target recognition, dimerization, and activation of Pyrococcus furiosus Argonaute. Mol Cell 2024; 84:675-686.e4. [PMID: 38295801 DOI: 10.1016/j.molcel.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/15/2023] [Accepted: 01/05/2024] [Indexed: 02/18/2024]
Abstract
The Argonaute nuclease from the thermophilic archaeon Pyrococcus furiosus (PfAgo) contributes to host defense and represents a promising biotechnology tool. Here, we report the structure of a PfAgo-guide DNA-target DNA ternary complex at the cleavage-compatible state. The ternary complex is predominantly dimerized, and the dimerization is solely mediated by PfAgo at PIWI-MID, PIWI-PIWI, and PAZ-N interfaces. Additionally, PfAgo accommodates a short 14-bp guide-target DNA duplex with a wedge-type N domain and specifically recognizes 5'-phosphorylated guide DNA. In contrast, the PfAgo-guide DNA binary complex is monomeric, and the engagement of target DNA with 14-bp complementarity induces sufficient dimerization and activation of PfAgo, accompanied by movement of PAZ and N domains. A closely related Argonaute from Thermococcus thioreducens adopts a similar dimerization configuration with an additional zinc finger formed at the dimerization interface. Dimerization of both Argonautes stabilizes the catalytic loops, highlighting the important role of Argonaute dimerization in the activation and target cleavage.
Collapse
Affiliation(s)
- Longyu Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Wanping Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Chendi Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Xiaochen Xie
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Fuyong Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Miaomiao Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Wuxiang Mao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Na Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Qiang Wei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.
| | - Zhuang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.
| |
Collapse
|
2
|
DangThu Q, Nguyen TT, Jang SH, Lee C. Molecular cloning and biochemical characterization of a NAD-dependent sorbitol dehydrogenase from cold-adapted Pseudomonas mandelii. FEMS Microbiol Lett 2021; 368:6064296. [PMID: 33399820 DOI: 10.1093/femsle/fnaa222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/29/2020] [Indexed: 11/13/2022] Open
Abstract
Sugar alcohols (polyols) have important roles as nutrients, anti-freezing agents and scavengers of free radicals in cold-adapted bacteria, but the characteristics of polyol dehydrogenases in cold-adapted bacteria remain largely unknown. In this study, based on the observation that a cold-adapted bacterium Pseudomonas mandelii JR-1 predominantly utilized d-sorbitol as its carbon source, among the four polyols examined (d-galactitol, d-mannitol, d-sorbitol and d-xylitol), we cloned and characterized a sorbitol dehydrogenase (SDH, EC 1.1.1.14) belonging to the short-chain dehydrogenase/reductase family from this bacterium (the SDH hereafter referred to as PmSDH). PmSDH contained Asn111, Ser140, Tyr153 and Lys157 as catalytic active site residues and existed as an ∼67-kDa dimer in size-exclusion chromatography. PmSDH converted d-sorbitol to d-fructose using nicotinamide adenine dinucleotide (NAD+) as a cofactor and, vice versa, d-fructose to d-sorbitol using nicotinamide adenine dinucleotide reduced (NADH) as a cofactor. PmSDH maintained its conformational flexibility, secondary and tertiary structures, and thermal stability at 4-25°C. These results indicate that PmSDH, which has a flexible structure and a high catalytic activity at colder temperatures, is well suited to sorbitol utilization in the cold-adapted bacterium P. mandelii JR-1.
Collapse
Affiliation(s)
- Quynh DangThu
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan 38453, South Korea
| | - Thu-Thuy Nguyen
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan 38453, South Korea
| | - Sei-Heon Jang
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan 38453, South Korea
| | - ChangWoo Lee
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan 38453, South Korea
| |
Collapse
|
3
|
Egbert M, Porter KA, Ghani U, Kotelnikov S, Nguyen T, Ashizawa R, Kozakov D, Vajda S. Conservation of binding properties in protein models. Comput Struct Biotechnol J 2021; 19:2549-2566. [PMID: 34025942 PMCID: PMC8114079 DOI: 10.1016/j.csbj.2021.04.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 01/09/2023] Open
Abstract
We study the models submitted to round 12 of the Critical Assessment of protein Structure Prediction (CASP) experiment to assess how well the binding properties are conserved when the X-ray structures of the target proteins are replaced by their models. To explore small molecule binding we generate distributions of molecular probes - which are fragment-sized organic molecules of varying size, shape, and polarity - around the protein, and count the number of interactions between each residue and the probes, resulting in a vector of interactions we call a binding fingerprint. The similarity between two fingerprints, one for the X-ray structure and the other for a model of the protein, is determined by calculating the correlation coefficient between the two vectors. The resulting correlation coefficients are shown to correlate with global measures of accuracy established in CASP, and the relationship yields an accuracy threshold that has to be reached for meaningful binding surface conservation. The clusters formed by the probe molecules reliably predict binding hot spots and ligand binding sites in both X-ray structures and reasonably accurate models of the target, but ensembles of models may be needed for assessing the availability of proper binding pockets. We explored ligand docking to the few targets that had bound ligands in the X-ray structure. More targets were available to assess the ability of the models to reproduce protein-protein interactions by docking both the X-ray structures and models to their interaction partners in complexes. It was shown that this application is more difficult than finding small ligand binding sites, and the success rates heavily depend on the local structure in the potential interface. In particular, predicted conformations of flexible loops are frequently incorrect in otherwise highly accurate models, and may prevent predicting correct protein-protein interactions.
Collapse
Affiliation(s)
- Megan Egbert
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - Kathryn A. Porter
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - Usman Ghani
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - Sergei Kotelnikov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Thu Nguyen
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Ryota Ashizawa
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
- Department of Chemistry, Boston University, Boston, MA 02215, United States
| |
Collapse
|
4
|
Kohlmeier MG, Bailey-Elkin BA, Mark BL, Oresnik IJ. Characterization of the sorbitol dehydrogenase SmoS from Sinorhizobium meliloti 1021. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2021; 77:380-390. [PMID: 33645541 DOI: 10.1107/s2059798321001017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/28/2021] [Indexed: 11/10/2022]
Abstract
Sinorhizobium meliloti 1021 is a Gram-negative alphaproteobacterium with a robust capacity for carbohydrate metabolism. The enzymes that facilitate these reactions assist in the survival of the bacterium across a range of environmental niches, and they may also be suitable for use in industrial processes. SmoS is a dehydrogenase that catalyzes the oxidation of the commonly occurring sugar alcohols sorbitol and galactitol to fructose and tagatose, respectively, using NAD+ as a cofactor. The main objective of this study was to evaluate SmoS using biochemical techniques. The nucleotide sequence was codon-optimized for heterologous expression in Escherichia coli BL21 (DE3) Gold cells and the protein was subsequently overexpressed and purified. Size-exclusion chromatography and X-ray diffraction experiments suggest that SmoS is a tetramer. SmoS was crystallized, and crystals obtained in the absence of substrate diffracted to 2.1 Å resolution and those of a complex with sorbitol diffracted to 2.0 Å resolution. SmoS was characterized kinetically and shown to have a preference for sorbitol despite having a higher affinity for galactitol. Computational ligand-docking experiments suggest that tagatose binds the protein in a more energetically favourable complex than fructose, which is retained in the active site over a longer time frame following oxidation and reduces the rate of the reaction. These results supplement the inventory of biomolecules with potential for industrial applications and enhance the understanding of metabolism in the model organism S. meliloti.
Collapse
Affiliation(s)
- MacLean G Kohlmeier
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ben A Bailey-Elkin
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Brian L Mark
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ivan J Oresnik
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
5
|
Kryshtafovych A, Albrecht R, Baslé A, Bule P, Caputo AT, Carvalho AL, Chao KL, Diskin R, Fidelis K, Fontes CMGA, Fredslund F, Gilbert HJ, Goulding CW, Hartmann MD, Hayes CS, Herzberg O, Hill JC, Joachimiak A, Kohring GW, Koning RI, Lo Leggio L, Mangiagalli M, Michalska K, Moult J, Najmudin S, Nardini M, Nardone V, Ndeh D, Nguyen TH, Pintacuda G, Postel S, van Raaij MJ, Roversi P, Shimon A, Singh AK, Sundberg EJ, Tars K, Zitzmann N, Schwede T. Target highlights from the first post-PSI CASP experiment (CASP12, May-August 2016). Proteins 2018; 86 Suppl 1:27-50. [PMID: 28960539 PMCID: PMC5820184 DOI: 10.1002/prot.25392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 12/27/2022]
Abstract
The functional and biological significance of the selected CASP12 targets are described by the authors of the structures. The crystallographers discuss the most interesting structural features of the target proteins and assess whether these features were correctly reproduced in the predictions submitted to the CASP12 experiment.
Collapse
Affiliation(s)
- Andriy Kryshtafovych
- Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, California, 95616
| | - Reinhard Albrecht
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
| | - Arnaud Baslé
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Pedro Bule
- CIISA - Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Portugal, Lisboa
| | - Alessandro T Caputo
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England, United Kingdom
| | - Ana Luisa Carvalho
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Cien⁁cias e Tecnologia, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Kinlin L Chao
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, 20850
| | - Ron Diskin
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Krzysztof Fidelis
- Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, California, 95616
| | - Carlos M G A Fontes
- CIISA - Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Portugal, Lisboa
| | - Folmer Fredslund
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
| | - Harry J Gilbert
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Celia W Goulding
- Department of Molecular Biology and Biochemistry/Pharmaceutical Sciences, University of California Irvine, Irvine, California, 92697
| | - Marcus D Hartmann
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology/Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, California, 93106
| | - Osnat Herzberg
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, 20850
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742
| | - Johan C Hill
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England, United Kingdom
| | - Andrzej Joachimiak
- Argonne National Laboratory, Midwest Center for Structural Genomics/Structural Biology Center, Biosciences Division, Argonne, Illinois, 60439
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, 60637
| | - Gert-Wieland Kohring
- Microbiology, Saarland University, Campus Building A1.5, Saarbrücken, Saarland, D-66123, Germany
| | - Roman I Koning
- Netherlands Centre for Electron Nanoscopy, Institute of Biology Leiden, Leiden University, 2333, CC Leiden, The Netherlands
- Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
| | - Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, 20126, Italy
| | - Karolina Michalska
- Argonne National Laboratory, Midwest Center for Structural Genomics/Structural Biology Center, Biosciences Division, Argonne, Illinois, 60439
| | - John Moult
- Department of Cell Biology and Molecular genetics, University of Maryland, 9600 Gudelsky Drive, Institute for Bioscience and Biotechnology Research, Rockville, Maryland, 20850
| | - Shabir Najmudin
- CIISA - Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Portugal, Lisboa
| | - Marco Nardini
- Department of Biosciences, University of Milano, Milano, 20133, Italy
| | - Valentina Nardone
- Department of Biosciences, University of Milano, Milano, 20133, Italy
| | - Didier Ndeh
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Thanh-Hong Nguyen
- Department of Macromolecular Structures, Centro Nacional de Biotecnologia (CSIC), calle Darwin 3, Madrid, 28049, Spain
| | - Guido Pintacuda
- Université de Lyon, Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Villeurbanne, 69100, France
| | - Sandra Postel
- University of Maryland School of Medicine, Institute of Human Virology, Baltimore, Maryland, 21201
| | - Mark J van Raaij
- Department of Macromolecular Structures, Centro Nacional de Biotecnologia (CSIC), calle Darwin 3, Madrid, 28049, Spain
| | - Pietro Roversi
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, University Road, Leicester, LE1 7RN, UK
| | - Amir Shimon
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Abhimanyu K Singh
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, United Kingdom
| | - Eric J Sundberg
- Department of Medicine and Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Human Virology, Baltimore, Maryland, 21201
| | - Kaspars Tars
- Latvian Biomedical Research and Study Center, Rātsupītes 1, Riga, LV1067, Latvia
- Faculty of Biology, Department of Molecular Biology, University of Latvia, Jelgavas 1, Riga, LV-1004, Latvia
| | - Nicole Zitzmann
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England, United Kingdom
| | - Torsten Schwede
- Biozentrum/SIB Swiss Institute of Bioinformatics, Klingelbergstrasse 50, Basel, 4056, Switzerland
| |
Collapse
|