1
|
Gálvez-Roldán C, Cerna-Vargas JP, Rodríguez-Herva JJ, Krell T, Santamaría-Hernando S, López-Solanilla E. A Nitrate-Sensing Domain-Containing Chemoreceptor Is Required for Successful Entry and Virulence of Dickeya dadantii 3937 in Potato Plants. PHYTOPATHOLOGY 2023; 113:390-399. [PMID: 36399025 DOI: 10.1094/phyto-10-22-0367-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nitrate metabolism plays an important role in bacterial physiology. During the interaction of plant-pathogenic bacteria with their hosts, bacteria face variable conditions with respect to nitrate availability. Perception mechanisms through the chemosensory pathway drive the entry and control the colonization of the plant host in phytopathogenic bacteria. In this work, the identification and characterization of the nitrate- and nitrite-sensing (NIT) domain-containing chemoreceptor of Dickeya dadantii 3937 (Dd3937) allowed us to unveil the key role of nitrate sensing not only for the entry into the plant apoplast through wounds but also for infection success. We determined the specificity of this chemoreceptor to bind nitrate and nitrite, with a slight ligand preference for nitrate. Gene expression analysis showed that nitrate perception controls not only the expression of nitrate reductase genes involved in respiratory and assimilatory metabolic processes but also the expression of gyrA, hrpN, and bgxA, three well-known virulence determinants in Dd3937.
Collapse
Affiliation(s)
- Clara Gálvez-Roldán
- Centro de Biotecnología y Genómica de Plantas CBGP, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Parque Científico y Tecnológico de la UPM, Pozuelo de Alarcón, Madrid, Spain
| | - Jean Paul Cerna-Vargas
- Centro de Biotecnología y Genómica de Plantas CBGP, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Parque Científico y Tecnológico de la UPM, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Protección Ambiental, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - José Juan Rodríguez-Herva
- Centro de Biotecnología y Genómica de Plantas CBGP, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Parque Científico y Tecnológico de la UPM, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Tino Krell
- Departamento de Protección Ambiental, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Saray Santamaría-Hernando
- Centro de Biotecnología y Genómica de Plantas CBGP, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Parque Científico y Tecnológico de la UPM, Pozuelo de Alarcón, Madrid, Spain
| | - Emilia López-Solanilla
- Centro de Biotecnología y Genómica de Plantas CBGP, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Parque Científico y Tecnológico de la UPM, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
2
|
Moroz LL, Mukherjee K, Romanova DY. Nitric oxide signaling in ctenophores. Front Neurosci 2023; 17:1125433. [PMID: 37034176 PMCID: PMC10073611 DOI: 10.3389/fnins.2023.1125433] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Nitric oxide (NO) is one of the most ancient and versatile signal molecules across all domains of life. NO signaling might also play an essential role in the origin of animal organization. Yet, practically nothing is known about the distribution and functions of NO-dependent signaling pathways in representatives of early branching metazoans such as Ctenophora. Here, we explore the presence and organization of NO signaling components using Mnemiopsis and kin as essential reference species. We show that NO synthase (NOS) is present in at least eight ctenophore species, including Euplokamis and Coeloplana, representing the most basal ctenophore lineages. However, NOS could be secondarily lost in many other ctenophores, including Pleurobrachia and Beroe. In Mnemiopsis leidyi, NOS is present both in adult tissues and differentially expressed in later embryonic stages suggesting the involvement of NO in developmental mechanisms. Ctenophores also possess soluble guanylyl cyclases as potential NO receptors with weak but differential expression across tissues. Combined, these data indicate that the canonical NO-cGMP signaling pathways existed in the common ancestor of animals and could be involved in the control of morphogenesis, cilia activities, feeding and different behaviors.
Collapse
Affiliation(s)
- Leonid L. Moroz
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, United States
- *Correspondence: Leonid L. Moroz, ; orcid.org/0000-0002-1333-3176
| | - Krishanu Mukherjee
- The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, United States
| | - Daria Y. Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
| |
Collapse
|
3
|
Polinski JM, Zimin AV, Clark KF, Kohn AB, Sadowski N, Timp W, Ptitsyn A, Khanna P, Romanova DY, Williams P, Greenwood SJ, Moroz LL, Walt DR, Bodnar AG. The American lobster genome reveals insights on longevity, neural, and immune adaptations. SCIENCE ADVANCES 2021; 7:7/26/eabe8290. [PMID: 34162536 PMCID: PMC8221624 DOI: 10.1126/sciadv.abe8290] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 05/07/2021] [Indexed: 05/30/2023]
Abstract
The American lobster, Homarus americanus, is integral to marine ecosystems and supports an important commercial fishery. This iconic species also serves as a valuable model for deciphering neural networks controlling rhythmic motor patterns and olfaction. Here, we report a high-quality draft assembly of the H. americanus genome with 25,284 predicted gene models. Analysis of the neural gene complement revealed extraordinary development of the chemosensory machinery, including a profound diversification of ligand-gated ion channels and secretory molecules. The discovery of a novel class of chimeric receptors coupling pattern recognition and neurotransmitter binding suggests a deep integration between the neural and immune systems. A robust repertoire of genes involved in innate immunity, genome stability, cell survival, chemical defense, and cuticle formation represents a diversity of defense mechanisms essential to thrive in the benthic marine environment. Together, these unique evolutionary adaptations contribute to the longevity and ecological success of this long-lived benthic predator.
Collapse
Affiliation(s)
| | - Aleksey V Zimin
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - K Fraser Clark
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Nova Scotia B2N 5E3, Canada
| | - Andrea B Kohn
- The Whitney Laboratory for Marine Bioscience and Department of Neuroscience, University of Florida, Gainesville and St. Augustine, FL 32080-8623, USA
| | - Norah Sadowski
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Winston Timp
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Andrey Ptitsyn
- Gloucester Marine Genomics Institute, Gloucester, MA 01930, USA
| | - Prarthana Khanna
- Genetics Program, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Daria Y Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow 117485, Russia
| | - Peter Williams
- The Whitney Laboratory for Marine Bioscience and Department of Neuroscience, University of Florida, Gainesville and St. Augustine, FL 32080-8623, USA
| | - Spencer J Greenwood
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3, Canada
| | - Leonid L Moroz
- The Whitney Laboratory for Marine Bioscience and Department of Neuroscience, University of Florida, Gainesville and St. Augustine, FL 32080-8623, USA
| | - David R Walt
- Gloucester Marine Genomics Institute, Gloucester, MA 01930, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Andrea G Bodnar
- Gloucester Marine Genomics Institute, Gloucester, MA 01930, USA.
| |
Collapse
|
4
|
Ehrhardt MKG, Gerth ML, Johnston JM. Structure of a double CACHE chemoreceptor ligand-binding domain from Pseudomonas syringae provides insights into the basis of proline recognition. Biochem Biophys Res Commun 2021; 549:194-199. [PMID: 33721671 DOI: 10.1016/j.bbrc.2021.02.090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 10/21/2022]
Abstract
Chemotaxis is the process of sensing chemical gradients and navigating towards favourable conditions. Bacterial chemotaxis is mediated by arrays of trans-membrane chemoreceptor proteins. The most common class of chemoreceptors have periplasmic ligand-binding domains (LBDs) that detect extracellular chemical signs and transduce these signals to the downstream chemotaxis machinery. The repertoire of chemoreceptor proteins in a bacterium determines the range of environmental signals to which it can respond. Pseudomonas syringae pv. actinidiae (Psa) is a plant pathogen which causes bacterial canker of kiwifruit (Actinidia sp.). Compared to many other bacteria, Psa has a large number of chemoreceptors encoded in its genome (43) and most of these remain uncharacterized. A previous study identified PscC as a potential chemoreceptor for l-proline and other amino acid ligands. Here, we have characterized the interaction of PscC-LBD with l-proline using a combination of isothermal titration calorimetry (ITC) and X-ray crystallography. ITC confirmed direct binding of l-proline to PscC-LBD with KD value of 5.0 μM. We determined the structure of PscC-LBD in complex with l-proline. Our structural analysis showed that PscC-LBD adopts similar double-CACHE fold to several other amino acid chemoreceptors. A comparison of the PscC-LDB to other dCACHE structures highlights residues in the binding cavity which contribute to its ligand specificity.
Collapse
Affiliation(s)
| | - Monica L Gerth
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Jodie M Johnston
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
5
|
Moroz LL, Romanova DY, Nikitin MA, Sohn D, Kohn AB, Neveu E, Varoqueaux F, Fasshauer D. The diversification and lineage-specific expansion of nitric oxide signaling in Placozoa: insights in the evolution of gaseous transmission. Sci Rep 2020; 10:13020. [PMID: 32747709 PMCID: PMC7400543 DOI: 10.1038/s41598-020-69851-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
Nitric oxide (NO) is a ubiquitous gaseous messenger, but we know little about its early evolution. Here, we analyzed NO synthases (NOS) in four different species of placozoans-one of the early-branching animal lineages. In contrast to other invertebrates studied, Trichoplax and Hoilungia have three distinct NOS genes, including PDZ domain-containing NOS. Using ultra-sensitive capillary electrophoresis assays, we quantified nitrites (products of NO oxidation) and L-citrulline (co-product of NO synthesis from L-arginine), which were affected by NOS inhibitors confirming the presence of functional enzymes in Trichoplax. Using fluorescent single-molecule in situ hybridization, we showed that distinct NOSs are expressed in different subpopulations of cells, with a noticeable distribution close to the edge regions of Trichoplax. These data suggest both the compartmentalized release of NO and a greater diversity of cell types in placozoans than anticipated. NO receptor machinery includes both canonical and novel NIT-domain containing soluble guanylate cyclases as putative NO/nitrite/nitrate sensors. Thus, although Trichoplax and Hoilungia exemplify the morphologically simplest free-living animals, the complexity of NO-cGMP-mediated signaling in Placozoa is greater to those in vertebrates. This situation illuminates multiple lineage-specific diversifications of NOSs and NO/nitrite/nitrate sensors from the common ancestor of Metazoa and the preservation of conservative NOS architecture from prokaryotic ancestors.
Collapse
Affiliation(s)
- Leonid L Moroz
- Whitney Laboratory for Marine Bioscience and Departments of Neuroscience, University of Florida, St. Augustine and Gainesville, FL, 32080, USA.
| | - Daria Y Romanova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Mikhail A Nikitin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Dosung Sohn
- Whitney Laboratory for Marine Bioscience and Departments of Neuroscience, University of Florida, St. Augustine and Gainesville, FL, 32080, USA
| | - Andrea B Kohn
- Whitney Laboratory for Marine Bioscience and Departments of Neuroscience, University of Florida, St. Augustine and Gainesville, FL, 32080, USA
| | - Emilie Neveu
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| | - Frederique Varoqueaux
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| | - Dirk Fasshauer
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| |
Collapse
|