1
|
Yukawa K, Yamamoto-Mcguire S, Cafaro L, Hong C, Kamme F, Ikezu T, Ikezu S. Antisense oligonucleotide-based targeting of Tau-tubulin kinase 1 prevents hippocampal accumulation of phosphorylated tau in PS19 tauopathy mice. Acta Neuropathol Commun 2023; 11:166. [PMID: 37853497 PMCID: PMC10585748 DOI: 10.1186/s40478-023-01661-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023] Open
Abstract
Tau tubulin kinase-1 (TTBK1), a neuron-specific tau kinase, is highly expressed in the entorhinal cortex and hippocampal regions, where early tau pathology evolves in Alzheimer's disease (AD). The protein expression level of TTBK1 is elevated in the cortex brain tissues with AD patients compared to the control subjects. We therefore hypothesized that antisense oligonucleotide (ASO) based targeting Ttbk1 could prevent the accumulation of phosphorylated tau, thereby delaying the development of tau pathology in AD. Here we show that in vivo administration of ASO targeting mouse Ttbk1 (ASO-Ttbk1) specifically suppressed the expression of Ttbk1 without affecting Ttbk2 expression in the temporal cortex of PS19 tau transgenic mice. Central administration of ASO-Ttbk1 in PS19 mice significantly reduced the expression level of representative phosphor-tau epitopes relevant to AD at 8 weeks post-dose, including pT231, pT181, and pS396 in the sarkosyl soluble and insoluble fractions isolated from hippocampal tissues as determined by ELISA and pS422 in soluble fractions as determined by western blotting. Immunofluorescence demonstrated that ASO-Ttbk1 significantly reduced pS422 phosphorylated tau intensity in mossy fibers region of the dentate gyrus in PS19 mice. RNA-sequence analysis of the temporal cortex tissue revealed significant enrichment of interferon-gamma and complement pathways and increased expression of antigen presenting molecules (Cd86, Cd74, and H2-Aa) in PS19 mice treated with ASO-Ttbk1, suggesting its potential effect on microglial phenotype although neurotoxic effect was absent. These data suggest that TTBK1 is an attractive therapeutic target to suppress TTBK1 without compromising TTBK2 expression and pathological tau phosphorylation in the early stages of AD.
Collapse
Affiliation(s)
- Kayo Yukawa
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Satomi Yamamoto-Mcguire
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Louis Cafaro
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | | | | | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA.
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA.
- Regenerative Science Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905, USA.
- Mayo Clinic Alzheimer's Disease Research Center, Rochester, MN, 55905, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Seiko Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA.
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA.
| |
Collapse
|
2
|
Bashore FM, Marquez AB, Chaikuad A, Howell S, Dunn AS, Beltran AA, Smith JL, Drewry DH, Beltran AS, Axtman AD. Modulation of tau tubulin kinases (TTBK1 and TTBK2) impacts ciliogenesis. Sci Rep 2023; 13:6118. [PMID: 37059819 PMCID: PMC10104807 DOI: 10.1038/s41598-023-32854-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/03/2023] [Indexed: 04/16/2023] Open
Abstract
Tau tubulin kinase 1 and 2 (TTBK1/2) are highly homologous kinases that are expressed and mediate disease-relevant pathways predominantly in the brain. Distinct roles for TTBK1 and TTBK2 have been delineated. While efforts have been devoted to characterizing the impact of TTBK1 inhibition in diseases like Alzheimer's disease and amyotrophic lateral sclerosis, TTBK2 inhibition has been less explored. TTBK2 serves a critical function during cilia assembly. Given the biological importance of these kinases, we designed a targeted library from which we identified several chemical tools that engage TTBK1 and TTBK2 in cells and inhibit their downstream signaling. Indolyl pyrimidinamine 10 significantly reduced the expression of primary cilia on the surface of human induced pluripotent stem cells (iPSCs). Furthermore, analog 10 phenocopies TTBK2 knockout in iPSCs, confirming a role for TTBK2 in ciliogenesis.
Collapse
Affiliation(s)
- Frances M Bashore
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ariana B Marquez
- Human Pluripotent Cell Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strabe 15, 60438, Frankfurt, Germany
| | - Stefanie Howell
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Andrea S Dunn
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alvaro A Beltran
- Human Pluripotent Cell Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jeffery L Smith
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - David H Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Adriana S Beltran
- Human Pluripotent Cell Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alison D Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
4
|
Halkina T, Henderson JL, Lin EY, Himmelbauer MK, Jones JH, Nevalainen M, Feng J, King K, Rooney M, Johnson JL, Marcotte DJ, Chodaparambil JV, Kumar PR, Patterson TA, Murugan P, Schuman E, Wong L, Hesson T, Lamore S, Bao C, Calhoun M, Certo H, Amaral B, Dillon GM, Gilfillan R, de Turiso FGL. Discovery of Potent and Brain-Penetrant Tau Tubulin Kinase 1 (TTBK1) Inhibitors that Lower Tau Phosphorylation In Vivo. J Med Chem 2021; 64:6358-6380. [PMID: 33944571 DOI: 10.1021/acs.jmedchem.1c00382] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Structural analysis of the known NIK inhibitor 3 bound to the kinase domain of TTBK1 led to the design and synthesis of a novel class of azaindazole TTBK1 inhibitors exemplified by 8 (cell IC50: 571 nM). Systematic optimization of this series of analogs led to the discovery of 31, a potent (cell IC50: 315 nM) and selective TTBK inhibitor with suitable CNS penetration (rat Kp,uu: 0.32) for in vivo proof of pharmacology studies. The ability of 31 to inhibit tau phosphorylation at the disease-relevant Ser 422 epitope was demonstrated in both a mouse hypothermia and a rat developmental model and provided evidence that modulation of this target may be relevant in the treatment of Alzheimer's disease and other tauopathies.
Collapse
Affiliation(s)
- Tamara Halkina
- Department of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jaclyn L Henderson
- Department of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Edward Y Lin
- Department of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Martin K Himmelbauer
- Department of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - J Howard Jones
- Department of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Marta Nevalainen
- Department of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jun Feng
- Department of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Kristopher King
- Department of Drug Metabolism and Pharmacokinetics, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Michael Rooney
- Department of Drug Metabolism and Pharmacokinetics, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Joshua L Johnson
- Department of Drug Metabolism and Pharmacokinetics, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Douglas J Marcotte
- Department of Physical Biochemistry and Molecular Design, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jayanth V Chodaparambil
- Department of Physical Biochemistry and Molecular Design, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - P Rajesh Kumar
- Department of Physical Biochemistry and Molecular Design, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Thomas A Patterson
- Department of Physical Biochemistry and Molecular Design, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Paramasivam Murugan
- Department of Bioassays, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Eli Schuman
- Department of Bioassays, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - LaiYee Wong
- Department of Bioassays, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Thomas Hesson
- Department of Bioassays, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Sarah Lamore
- Department of Preclinical Safety, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Channa Bao
- Department of Emerging Neurosciences Research Unit, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Michael Calhoun
- Department of Emerging Neurosciences Research Unit, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Hannah Certo
- Department of Emerging Neurosciences Research Unit, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Brenda Amaral
- Department of Emerging Neurosciences Research Unit, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Gregory M Dillon
- Department of Emerging Neurosciences Research Unit, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Rab Gilfillan
- Department of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | | |
Collapse
|
5
|
Ahamad S, Kanipakam H, Kumar V, Gupta D. A molecular journey to check the conformational dynamics of tau tubulin kinase 2 mutations associated with Alzheimer's disease. RSC Adv 2021; 11:1320-1331. [PMID: 35424125 PMCID: PMC8693565 DOI: 10.1039/d0ra07659g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/28/2020] [Indexed: 01/25/2023] Open
Abstract
Proteins are one of the most vital components of biological functions. Proteins have evolutionarily conserved structures as the shape and folding pattern predominantly determine their function. Considerable research efforts have been made to study the protein folding mechanism. The misfolding of protein intermediates of large groups form polymers with unwanted aggregates that may initiate various diseases. Amongst the diseases caused by misfolding of proteins, Alzheimer's disease (AD) is one of the most prevalent neuro-disorders which has a worldwide impact on human health. The disease is associated with several vital proteins and single amino acid mutations. Tau tubulin kinase 2 (TTBK2) is one of the kinases which is known to phosphorylate tau and tubulin. The literature strongly supports that the mutations-K50E, D163A, R181E, A184E and K143E are associated with multiple important cellular processes of TTBK2. In this study, to understand the molecular basis of the functional effects of the mutations, we have performed structural modeling for TTBK2 and its mutations, using computational prediction algorithms and Molecular Dynamics (MD) simulations. The MD simulations highlighted the impact of the mutations on the Wild Type (WT) by the conformational dynamics, Free Energy Landscape (FEL) and internal molecular motions, indicating the structural de-stabilization which may lead to the disruption of its biological functions. The destabilizing effect of TTBK2 upon mutations provided valuable information about individuals carrying this mutant which could be used as a diagnostic marker in AD.
Collapse
Affiliation(s)
- Shahzaib Ahamad
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB) Aruna Asaf Ali Marg New Delhi 110067 India +919312304662 +91 1126742184
| | - Hema Kanipakam
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB) Aruna Asaf Ali Marg New Delhi 110067 India +919312304662 +91 1126742184
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences, Amity University Noida UP India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB) Aruna Asaf Ali Marg New Delhi 110067 India +919312304662 +91 1126742184
| |
Collapse
|