1
|
Shawky AM, Almalki FA, Alzahrani HA, Abdalla AN, Youssif BGM, Ibrahim NA, Gamal M, El-Sherief HAM, Abdel-Fattah MM, Hefny AA, Abdelazeem AH, Gouda AM. Covalent small-molecule inhibitors of SARS-CoV-2 Mpro: Insights into their design, classification, biological activity, and binding interactions. Eur J Med Chem 2024; 277:116704. [PMID: 39121741 DOI: 10.1016/j.ejmech.2024.116704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
Since 2020, many compounds have been investigated for their potential use in the treatment of SARS-CoV-2 infection. Among these agents, a huge number of natural products and FDA-approved drugs have been evaluated as potential therapeutics for SARS-CoV-2 using virtual screening and docking studies. However, the identification of the molecular targets involved in viral replication led to the development of rationally designed anti-SARS-CoV-2 agents. Among these targets, the main protease (Mpro) is one of the key enzymes needed in the replication of the virus. The data gleaned from the crystal structures of SARS-CoV-2 Mpro complexes with small-molecule covalent inhibitors has been used in the design and discovery of many highly potent and broad-spectrum Mpro inhibitors. The current review focuses mainly on the covalent type of SARS-CoV-2 Mpro inhibitors. The design, chemistry, and classification of these inhibitors were also in focus. The biological activity of these inhibitors, including their inhibitory activities against Mpro, their antiviral activities, and the SAR studies, were discussed. The review also describes the potential mechanism of the interaction between these inhibitors and the catalytic Cys145 residue in Mpro. Moreover, the binding modes and key binding interactions of these covalent inhibitors were also illustrated. The covalent inhibitors discussed in this review were of diverse chemical nature and origin. Their antiviral activity was mediated mainly by the inhibition of SARS-CoV-2 Mpro, with IC50 values in the micromolar to the nanomolar range. Many of these inhibitors exhibited broad-spectrum inhibitory activity against the Mpro enzymes of other coronaviruses (SARS-CoV-1 and MERS-CoV). The dual inhibition of the Mpro and PLpro enzymes of SARS-CoV-2 could also provide higher therapeutic benefits than Mpro inhibition. Despite the approval of nirmatrelvir by the FDA, many mutations in the Mpro enzyme of SARS-CoV-2 have been reported. Although some of these mutations did not affect the potency of nirmatrelvir, there is an urgent need to develop a second generation of Mpro inhibitors. We hope that the data summarized in this review could help researchers in the design of a new potent generation of SARS-CoV-2 Mpro inhibitors.
Collapse
Affiliation(s)
- Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Faisal A Almalki
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Hayat Ali Alzahrani
- Applied Medical Science College, Medical Laboratory Technology Department, Northern Border University, Arar, Saudi Arabia
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia; Department of Pharmacology and Toxicology, Medicinal And Aromatic Plants Research Institute, National Center for Research, Khartoum, 2404, Sudan
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| | - Nashwa A Ibrahim
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Mohammed Gamal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Hany A M El-Sherief
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ahmed A Hefny
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt; School of Pharmacy, University of Waterloo, Kitchener, Ontario, N2G 1C5, Canada
| | - Ahmed H Abdelazeem
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt; Pharmacy Department, College of Pharmacy, Nursing and Medical Sciences, Riyadh Elm University, Riyadh, 11681, Saudi Arabia
| | - Ahmed M Gouda
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
2
|
Abuhammad A, Laurieri N, Rice A, Lowe ED, Singh N, Naser SM, Ratrout SS, Churchill GC. Structural and biochemical analysis of human inositol monophosphatase-1 inhibition by ebselen. J Biomol Struct Dyn 2023; 41:14036-14048. [PMID: 36762717 DOI: 10.1080/07391102.2023.2176925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Bipolar disorder is a major psychiatric disorder associated with cognitive impairment and a high suicide rate. Frontline therapy for this condition includes lithium (Li+)-containing treatments that can exert severe side effects. One target of Li+ is inositol monophosphatase-1 (IMPase1); inhibition of IMPase1 through small-molecule compounds may provide an alternative treatment for bipolar disorder. One such compound is the anti-inflammatory drug ebselen, which is well tolerated and safe; however, ebselen's exact mechanism of action in IMPase1 inhibition is not fully understood, preventing rational design of IMPase1 inhibitors. To fill this gap, we performed crystallographic and biochemical studies to investigate how ebselen inhibits IMPase1. We obtained a structure of IMPase1 in space group P21 after treatment with ebselen that revealed three key active-site loops (residues 33-44, 70-79, and 161-165) that are either disordered or in multiple conformations, supporting a hypothesis whereby dynamic conformational changes may be important for catalysis and ebselen inhibition. Using the thermal shift assay, we confirmed that ebselen significantly destabilizes the enzyme. Molecular docking suggests that ebselen could bind in the vicinity of His217. Investigation of the role of IMPase1 residues His217 and Cys218 suggests that inhibition of IMPase1 by ebselen may not be mediated via covalent modification of the active-site cysteine (Cys218) and is not affected by the covalent modification of other cysteine residues in the structure. Our results suggest that effects previously ascribed to ebselen-dependent inhibition likely result from disruption of essential active-site architecture, preventing activation of the IMPase1-Mg2+ complex.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Areej Abuhammad
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Nicola Laurieri
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Alistair Rice
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Edward D Lowe
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Nisha Singh
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Saleem M Naser
- Research and Development Department, APIs Division, Hikma Pharmaceutical Co. Ltd, Amman, Jordan
| | - Samer S Ratrout
- Research and Development Department, APIs Division, Hikma Pharmaceutical Co. Ltd, Amman, Jordan
| | - Grant C Churchill
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Ramli FF, Cowen PJ, Godlewska BR. The Potential Use of Ebselen in Treatment-Resistant Depression. Pharmaceuticals (Basel) 2022; 15:485. [PMID: 35455482 PMCID: PMC9030939 DOI: 10.3390/ph15040485] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Ebselen is an organoselenium compound developed as an antioxidant and subsequently shown to be a glutathione peroxidase (GPx) mimetic. Ebselen shows some efficacy in post-stroke neuroprotection and is currently in trial for the treatment and prevention of hearing loss, Meniere's Disease and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In vitro screening studies show that ebselen is also an effective inhibitor of the enzyme inositol monophosphatase (IMPase), which is a key target of the mood-stabilising drug lithium. Further, in animal experimental studies, ebselen produces effects on the serotonin system very similar to those of lithium and also decreases behavioural impulsivity. The antidepressant effects of lithium in treatment-resistant depression (TRD) have been attributed to its ability to facilitate presynaptic serotonin activity; this suggests that ebselen might also have a therapeutic role in this condition. Human studies utilising magnetic resonance spectroscopy support the notion that ebselen, at therapeutic doses, inhibits IMPase in the human brain. Moreover, neuropsychological studies support an antidepressant profile for ebselen based on positive effects on emotional processing and reward seeking. Ebselen also lowers a human laboratory measure of impulsivity, a property that has been associated with lithium's anti-suicidal effects in patients with mood disorders. Current clinical studies are directed towards assessment of the neuropsychological effects of ebselen in TRD patients. It will also be important to ascertain whether ebselen is able to lower impulsivity and suicidal behaviour in clinical populations. The objective of this review is to summarise the developmental history, pre-clinical and clinical psychopharmacological properties of ebselen in psychiatric disorders and its potential application as a treatment for TRD.
Collapse
Affiliation(s)
- Fitri Fareez Ramli
- Clinical Psychopharmacology Research Group, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (F.F.R.); (P.J.C.)
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Philip J. Cowen
- Clinical Psychopharmacology Research Group, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (F.F.R.); (P.J.C.)
| | - Beata R. Godlewska
- Clinical Psychopharmacology Research Group, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (F.F.R.); (P.J.C.)
| |
Collapse
|
4
|
Orian L, Flohé L. Selenium-Catalyzed Reduction of Hydroperoxides in Chemistry and Biology. Antioxidants (Basel) 2021; 10:1560. [PMID: 34679695 PMCID: PMC8533274 DOI: 10.3390/antiox10101560] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/06/2021] [Accepted: 09/28/2021] [Indexed: 01/23/2023] Open
Abstract
Among the chalcogens, selenium is the key element for catalyzed H2O2 reduction. In organic synthesis, catalytic amounts of organo mono- and di-selenides are largely used in different classes of oxidations, in which H2O2 alone is poorly efficient. Biological hydroperoxide metabolism is dominated by peroxidases and thioredoxin reductases, which balance hydroperoxide challenge and contribute to redox regulation. When their selenocysteine is replaced by cysteine, the cellular antioxidant defense system is impaired. Finally, classes of organoselenides have been synthesized with the aim of mimicking the biological strategy of glutathione peroxidases, but their therapeutic application has so far been limited. Moreover, their therapeutic use may be doubted, because H2O2 is not only toxic but also serves as an important messenger. Therefore, over-optimization of H2O2 reduction may lead to unexpected disturbances of metabolic regulation. Common to all these systems is the nucleophilic attack of selenium to one oxygen of the peroxide bond promoting its disruption. In this contribution, we revisit selected examples from chemistry and biology, and, by using results from accurate quantum mechanical modelling, we provide an accurate unified picture of selenium's capacity of reducing hydroperoxides. There is clear evidence that the selenoenzymes remain superior in terms of catalytic efficiency.
Collapse
Affiliation(s)
- Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131 Padova, Italy
| | - Leopold Flohé
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, 35121 Padova, Italy
- Departamento de Bioquimica, Universidad de la Republica, Montevideo 11800, Uruguay
| |
Collapse
|
5
|
Santi C, Scimmi C, Sancineto L. Ebselen and Analogues: Pharmacological Properties and Synthetic Strategies for Their Preparation. Molecules 2021; 26:4230. [PMID: 34299505 PMCID: PMC8306772 DOI: 10.3390/molecules26144230] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Ebselen is the leader of selenorganic compounds, and starting from its identification as mimetic of the key antioxidant enzyme glutathione peroxidase, several papers have appeared in literature claiming its biological activities. It was the subject of several clinical trials and it is currently in clinical evaluation for the treatment of COVID-19 patients. Given our interest in the synthesis and pharmacological evaluation of selenorganic derivatives with this review, we aimed to collect all the papers focused on the biological evaluation of ebselen and its close analogues, covering the timeline between 2016 and most of 2021. Our analysis evidences that, even if it lacks specificity when tested in vitro, being able to bind to every reactive cysteine, it proved to be always well tolerated in vivo, exerting no sign of toxicity whatever the administered doses. Besides, looking at the literature, we realized that no review article dealing with the synthetic approaches for the construction of the benzo[d][1,2]-selenazol-3(2H)-one scaffold is available; thus, a section of the present review article is completely devoted to this specific topic.
Collapse
Affiliation(s)
| | | | - Luca Sancineto
- Group of Catalysis and Green Organic Chemistry, Department of Pharmaceutical Sciences, University of Perugia Via del Liceo 1, 06122 Perugia, Italy; (C.S.); (C.S.)
| |
Collapse
|