Vassilyeva OY, Buvaylo EA, Lobko YV, Linnik RP, Kokozay VN, Skelton BW. Organic-inorganic hybrid tetrachlorocadmates as promising fluorescent agents for cross-linked polyurethanes: synthesis, crystal structures and extended performance analysis.
RSC Adv 2021;
11:7713-7722. [PMID:
35423254 PMCID:
PMC8695196 DOI:
10.1039/d0ra10787e]
[Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/08/2021] [Indexed: 01/12/2023] Open
Abstract
The aim of this work is to apply organic–inorganic hybrid salts made of imidazo[1,5-a]pyridinium-based cations and halometallate anions as fluorescent agents to modify cross-linked polyurethane (CPU) for the creation of flexible photoluminescent films. The use of ionic compounds ensures excellent dispersion of the luminescent components in the polymer matrix and prevents solid-state quenching. The absence of phase segregation makes it possible to fabricate uniformly luminescent films with a large area. To this, new tetrachlorocadmate salts [L]2[CdCl4] (1) and [L′]2[CdCl4] (2), where L+ is 2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridinium and [L′]+ is 2-methylimidazo[1,5-a]pyridinium cations, have been prepared and characterized by IR, NMR, UV-Vis spectroscopy and single crystal X-ray diffraction. The organic cations resulted from the oxidative cyclization-condensation involving CH3NH2·HCl and 2-pyridinecarbaldehyde in methanol (1), and formaldehyde, CH3NH2·HCl and 2-pyridinecarbaldehyde in an aqueous media (2). In the crystal of 1, loosely packed tetrahedral cations and π–π stacked anions are arranged in separate columns parallel to the a-axis. The pseudo-layered structure of 2 is built of the organic and inorganic layers alternating along the a axis. The adjacent CdCl42− anions in the inorganic layer show no connectivity. The organic–inorganic hybrids 1 and 2 were immobilized in situ in the cross-linked polyurethane in low content (1 wt%). The photoluminescent properties of 1 and 2 in the solid state and in the polymer films were investigated. The semi-transparent CPU films, that remain stable for months, retain the photoluminescent ability of both hybrids in the blue region with a prominent red shift in their emission.
Hybrid salts made of imidazo[1,5-a]pyridinium-based cations with easily tunable electronic structures, and halometallate anions that do not include any rare-earth or noble metals were used to fabricate flexible luminescent CPU films.![]()
Collapse