1
|
Fu X, Geng Z, Jiao Z, Ding W. A modified phase-retrieval algorithm to facilitate automatic de novo macromolecular structure determination in single-wavelength anomalous diffraction. IUCRJ 2024; 11:587-601. [PMID: 38904547 PMCID: PMC11220887 DOI: 10.1107/s2052252524004846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
The success of experimental phasing in macromolecular crystallography relies primarily on the accurate locations of heavy atoms bound to the target crystal. To improve the process of substructure determination, a modified phase-retrieval algorithm built on the framework of the relaxed alternating averaged reflection (RAAR) algorithm has been developed. Importantly, the proposed algorithm features a combination of the π-half phase perturbation for weak reflections and enforces the direct-method-based tangent formula for strong reflections in reciprocal space. The proposed algorithm is extensively demonstrated on a total of 100 single-wavelength anomalous diffraction (SAD) experimental datasets, comprising both protein and nucleic acid structures of different qualities. Compared with the standard RAAR algorithm, the modified phase-retrieval algorithm exhibits significantly improved effectiveness and accuracy in SAD substructure determination, highlighting the importance of additional constraints for algorithmic performance. Furthermore, the proposed algorithm can be performed without human intervention under most conditions owing to the self-adaptive property of the input parameters, thus making it convenient to be integrated into the structural determination pipeline. In conjunction with the IPCAS software suite, we demonstrated experimentally that automatic de novo structure determination is possible on the basis of our proposed algorithm.
Collapse
Affiliation(s)
- Xingke Fu
- Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijing100190People’s Republic of China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049People’s Republic of China
| | - Zhi Geng
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049People’s Republic of China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049People’s Republic of China
| | - Zhichao Jiao
- Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijing100190People’s Republic of China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049People’s Republic of China
| | - Wei Ding
- Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijing100190People’s Republic of China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049People’s Republic of China
- Songshan Lake Materials Laboratory, Dongguan523808, People’s Republic of China
| |
Collapse
|
2
|
El Omari K, Duman R, Mykhaylyk V, Orr CM, Latimer-Smith M, Winter G, Grama V, Qu F, Bountra K, Kwong HS, Romano M, Reis RI, Vogeley L, Vecchia L, Owen CD, Wittmann S, Renner M, Senda M, Matsugaki N, Kawano Y, Bowden TA, Moraes I, Grimes JM, Mancini EJ, Walsh MA, Guzzo CR, Owens RJ, Jones EY, Brown DG, Stuart DI, Beis K, Wagner A. Experimental phasing opportunities for macromolecular crystallography at very long wavelengths. Commun Chem 2023; 6:219. [PMID: 37828292 PMCID: PMC10570326 DOI: 10.1038/s42004-023-01014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
Despite recent advances in cryo-electron microscopy and artificial intelligence-based model predictions, a significant fraction of structure determinations by macromolecular crystallography still requires experimental phasing, usually by means of single-wavelength anomalous diffraction (SAD) techniques. Most synchrotron beamlines provide highly brilliant beams of X-rays of between 0.7 and 2 Å wavelength. Use of longer wavelengths to access the absorption edges of biologically important lighter atoms such as calcium, potassium, chlorine, sulfur and phosphorus for native-SAD phasing is attractive but technically highly challenging. The long-wavelength beamline I23 at Diamond Light Source overcomes these limitations and extends the accessible wavelength range to λ = 5.9 Å. Here we report 22 macromolecular structures solved in this extended wavelength range, using anomalous scattering from a range of elements which demonstrate the routine feasibility of lighter atom phasing. We suggest that, in light of its advantages, long-wavelength crystallography is a compelling option for experimental phasing.
Collapse
Affiliation(s)
- Kamel El Omari
- Diamond Light Source, Harwell Science and Innovation Campus, -, OX110DE, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK
| | - Ramona Duman
- Diamond Light Source, Harwell Science and Innovation Campus, -, OX110DE, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK
| | - Vitaliy Mykhaylyk
- Diamond Light Source, Harwell Science and Innovation Campus, -, OX110DE, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK
| | - Christian M Orr
- Diamond Light Source, Harwell Science and Innovation Campus, -, OX110DE, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK
| | | | - Graeme Winter
- Diamond Light Source, Harwell Science and Innovation Campus, -, OX110DE, UK
| | - Vinay Grama
- Diamond Light Source, Harwell Science and Innovation Campus, -, OX110DE, UK
| | - Feng Qu
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Kiran Bountra
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Hok Sau Kwong
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Maria Romano
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131, Naples, Italy
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy
| | - Rosana I Reis
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Lutz Vogeley
- Charles River Discovery Research Services UK, Chesterford Research Park, Saffron Walden, CB10 1XL, UK
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Luca Vecchia
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - C David Owen
- Diamond Light Source, Harwell Science and Innovation Campus, -, OX110DE, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK
| | - Sina Wittmann
- Department of Biochemistry, University of Oxford, Oxford, UK
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Max Renner
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | - Miki Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, 305-0801, Japan
| | - Naohiro Matsugaki
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, 305-0801, Japan
- Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University of Advanced Studies (Soken-dai), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Yoshiaki Kawano
- Advanced Photon Technology Division, RIKEN SPring-8 Center, Hyogo, 679-5148, Japan
| | - Thomas A Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Isabel Moraes
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Jonathan M Grimes
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Erika J Mancini
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Martin A Walsh
- Diamond Light Source, Harwell Science and Innovation Campus, -, OX110DE, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK
| | - Cristiane R Guzzo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Raymond J Owens
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- The Rosalind Franklin Institute, Harwell Campus, Oxford, OX11 0FA, UK
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - David G Brown
- Charles River Discovery Research Services UK, Chesterford Research Park, Saffron Walden, CB10 1XL, UK
| | - Dave I Stuart
- Diamond Light Source, Harwell Science and Innovation Campus, -, OX110DE, UK
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Konstantinos Beis
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Armin Wagner
- Diamond Light Source, Harwell Science and Innovation Campus, -, OX110DE, UK.
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK.
| |
Collapse
|
3
|
Doukov T, Herschlag D, Yabukarski F. Obtaining anomalous and ensemble information from protein crystals from 220 K up to physiological temperatures. Acta Crystallogr D Struct Biol 2023; 79:212-223. [PMID: 36876431 PMCID: PMC9986799 DOI: 10.1107/s205979832300089x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/31/2023] [Indexed: 03/01/2023] Open
Abstract
X-ray crystallography has been invaluable in delivering structural information about proteins. Previously, an approach has been developed that allows high-quality X-ray diffraction data to be obtained from protein crystals at and above room temperature. Here, this previous work is built on and extended by showing that high-quality anomalous signal can be obtained from single protein crystals using diffraction data collected at 220 K up to physiological temperatures. The anomalous signal can be used to directly determine the structure of a protein, i.e. to phase the data, as is routinely performed under cryoconditions. This ability is demonstrated by obtaining diffraction data from model lysozyme, thaumatin and proteinase K crystals, the anomalous signal from which allowed their structures to be solved experimentally at 7.1 keV X-ray energy and at room temperature with relatively low data redundancy. It is also demonstrated that the anomalous signal from diffraction data obtained at 310 K (37°C) can be used to solve the structure of proteinase K and to identify ordered ions. The method provides useful anomalous signal at temperatures down to 220 K, resulting in an extended crystal lifetime and increased data redundancy. Finally, we show that useful anomalous signal can be obtained at room temperature using X-rays of 12 keV energy as typically used for routine data collection, allowing this type of experiment to be carried out at widely accessible synchrotron beamline energies and enabling the simultaneous extraction of high-resolution data and anomalous signal. With the recent emphasis on obtaining conformational ensemble information for proteins, the high resolution of the data allows such ensembles to be built, while the anomalous signal allows the structure to be experimentally solved, ions to be identified, and water molecules and ions to be differentiated. Because bound metal-, phosphorus- and sulfur-containing ions all have anomalous signal, obtaining anomalous signal across temperatures and up to physiological temperatures will provide a more complete description of protein conformational ensembles, function and energetics.
Collapse
Affiliation(s)
- Tzanko Doukov
- SMB, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Daniel Herschlag
- Deparment of Biochemistry, Stanford University, Stanford, CA 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Filip Yabukarski
- Deparment of Biochemistry, Stanford University, Stanford, CA 94305, USA
- Bristol-Myers Squibb, San Diego, CA 92121, USA
| |
Collapse
|
4
|
Greisman JB, Dalton KM, Sheehan CJ, Klureza MA, Kurinov I, Hekstra DR. Native SAD phasing at room temperature. Acta Crystallogr D Struct Biol 2022; 78:986-996. [PMID: 35916223 PMCID: PMC9344477 DOI: 10.1107/s2059798322006799] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
Single-wavelength anomalous diffraction (SAD) is a routine method for overcoming the phase problem when solving macromolecular structures. This technique requires the accurate measurement of intensities to determine differences between Bijvoet pairs. Although SAD experiments are commonly conducted at cryogenic temperatures to mitigate the effects of radiation damage, such temperatures can alter the conformational ensemble of the protein and may impede the merging of data from multiple crystals due to non-uniform freezing. Here, a strategy is presented to obtain high-quality data from room-temperature, single-crystal experiments. To illustrate the strengths of this approach, native SAD phasing at 6.55 keV was used to solve four structures of three model systems at 295 K. The resulting data sets allow automatic phasing and model building, and reveal alternate conformations that reflect the structure of proteins at room temperature.
Collapse
Affiliation(s)
- Jack B. Greisman
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, Massachusetts, USA
| | - Kevin M. Dalton
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, Massachusetts, USA
| | - Candice J. Sheehan
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, Massachusetts, USA
| | - Margaret A. Klureza
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts, USA
| | - Igor Kurinov
- NE-CAT, Department of Chemistry and Chemical Biology, Cornell University, 9700 South Cass Avenue, Argonne, Illinois, USA
| | - Doeke R. Hekstra
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, Massachusetts, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 52 Oxford Street, Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Hatti KS, McCoy AJ, Read RJ. Likelihood-based estimation of substructure content from single-wavelength anomalous diffraction (SAD) intensity data. Acta Crystallogr D Struct Biol 2021; 77:880-893. [PMID: 34196615 PMCID: PMC8251343 DOI: 10.1107/s2059798321004538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/28/2021] [Indexed: 11/14/2022] Open
Abstract
SAD phasing can be challenging when the signal-to-noise ratio is low. In such cases, having an accurate estimate of the substructure content can determine whether or not the substructure of anomalous scatterer positions can successfully be determined. Here, a likelihood-based target function is proposed to accurately estimate the strength of the anomalous scattering contribution directly from the measured intensities, determining a complex correlation parameter relating the Bijvoet mates as a function of resolution. This gives a novel measure of the intrinsic anomalous signal. The SAD likelihood target function also accounts for correlated errors in the measurement of intensities from Bijvoet mates, which can arise from the effects of radiation damage. When the anomalous signal is assumed to come primarily from a substructure comprising one anomalous scatterer with a known value of f'' and when the protein composition of the crystal is estimated correctly, the refined complex correlation parameters can be interpreted in terms of the atomic content of the primary anomalous scatterer before the substructure is known. The maximum-likelihood estimation of substructure content was tested on a curated database of 357 SAD cases with useful anomalous signal. The prior estimates of substructure content are highly correlated to the content determined by phasing calculations, with a correlation coefficient (on a log-log basis) of 0.72.
Collapse
Affiliation(s)
- Kaushik S. Hatti
- Cambridge Institute for Medical Research, Department of Haematology, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Airlie J. McCoy
- Cambridge Institute for Medical Research, Department of Haematology, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Randy J. Read
- Cambridge Institute for Medical Research, Department of Haematology, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
6
|
Agnarelli A, El Omari K, Duman R, Wagner A, Mancini EJ. Phosphorus and sulfur SAD phasing of the nucleic acid-bound DNA-binding domain of interferon regulatory factor 4. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2021; 77:202-207. [PMID: 34196610 PMCID: PMC8248823 DOI: 10.1107/s2053230x21006506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/21/2021] [Indexed: 11/24/2022]
Abstract
Solution of the structure of the DNA-binding domain of interferon regulatory factor 4 bound to its interferon-stimulated response element by native intrinsic phosphorus and sulfur single-wavelength anomalous dispersion methods (native SAD) is described. Pivotal to the regulation of key cellular processes such as the transcription, replication and repair of DNA, DNA-binding proteins play vital roles in all aspects of genetic activity. The determination of high-quality structures of DNA-binding proteins, particularly those in complexes with DNA, provides crucial insights into the understanding of these processes. The presence in such complexes of phosphate-rich oligonucleotides offers the choice of a rapid method for the routine solution of DNA-binding proteins through the use of long-wavelength beamlines such as I23 at Diamond Light Source. This article reports the use of native intrinsic phosphorus and sulfur single-wavelength anomalous dispersion methods to solve the complex of the DNA-binding domain (DBD) of interferon regulatory factor 4 (IRF4) bound to its interferon-stimulated response element (ISRE). The structure unexpectedly shows three molecules of the IRF4 DBD bound to one ISRE. The sole reliance on native intrinsic anomalous scattering elements that belong to DNA–protein complexes renders the method of general applicability to a large number of such protein complexes that cannot be solved by molecular replacement or by other phasing methods.
Collapse
Affiliation(s)
- Alessandro Agnarelli
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Kamel El Omari
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Ramona Duman
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Armin Wagner
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Erika J Mancini
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| |
Collapse
|
7
|
Zhang Y, El Omari K, Duman R, Liu S, Haider S, Wagner A, Parkinson GN, Wei D. Native de novo structural determinations of non-canonical nucleic acid motifs by X-ray crystallography at long wavelengths. Nucleic Acids Res 2020; 48:9886-9898. [PMID: 32453431 PMCID: PMC7515729 DOI: 10.1093/nar/gkaa439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 01/08/2023] Open
Abstract
Obtaining phase information remains a formidable challenge for nucleic acid structure determination. The introduction of an X-ray synchrotron beamline designed to be tunable to long wavelengths at Diamond Light Source has opened the possibility to native de novo structure determinations by the use of intrinsic scattering elements. This provides opportunities to overcome the limitations of introducing modifying nucleotides, often required to derive phasing information. In this paper, we build on established methods to generate new tools for nucleic acid structure determinations. We report on the use of (i) native intrinsic potassium single-wavelength anomalous dispersion methods (K-SAD), (ii) use of anomalous scattering elements integral to the crystallization buffer (extrinsic cobalt and intrinsic potassium ions), (iii) extrinsic bromine and intrinsic phosphorus SAD to solve complex nucleic acid structures. Using the reported methods we solved the structures of (i) Pseudorabies virus (PRV) RNA G-quadruplex and ligand complex, (ii) PRV DNA G-quadruplex, and (iii) an i-motif of human telomeric sequence. Our results highlight the utility of using intrinsic scattering as a pathway to solve and determine non-canonical nucleic acid motifs and reveal the variability of topology, influence of ligand binding, and glycosidic angle rearrangements seen between RNA and DNA G-quadruplexes of the same sequence.
Collapse
Affiliation(s)
- Yashu Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Kamel El Omari
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot OX11 0DE, UK
| | - Ramona Duman
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot OX11 0DE, UK
| | - Sisi Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Shozeb Haider
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Armin Wagner
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot OX11 0DE, UK
| | - Gary N Parkinson
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Dengguo Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Science, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
8
|
Mendez D, Bolotovsky R, Bhowmick A, Brewster AS, Kern J, Yano J, Holton JM, Sauter NK. Beyond integration: modeling every pixel to obtain better structure factors from stills. IUCRJ 2020; 7:1151-1167. [PMID: 33209326 PMCID: PMC7642780 DOI: 10.1107/s2052252520013007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/23/2020] [Indexed: 05/25/2023]
Abstract
Most crystallographic data processing methods use pixel integration. In serial femtosecond crystallography (SFX), the intricate interaction between the reciprocal lattice point and the Ewald sphere is integrated out by averaging symmetrically equivalent observations recorded across a large number (104-106) of exposures. Although sufficient for generating biological insights, this approach converges slowly, and using it to accurately measure anomalous differences has proved difficult. This report presents a novel approach for increasing the accuracy of structure factors obtained from SFX data. A physical model describing all observed pixels is defined to a degree of complexity such that it can decouple the various contributions to the pixel intensities. Model dependencies include lattice orientation, unit-cell dimensions, mosaic structure, incident photon spectra and structure factor amplitudes. Maximum likelihood estimation is used to optimize all model parameters. The application of prior knowledge that structure factor amplitudes are positive quantities is included in the form of a reparameterization. The method is tested using a synthesized SFX dataset of ytterbium(III) lysozyme, where each X-ray laser pulse energy is centered at 9034 eV. This energy is 100 eV above the Yb3+ L-III absorption edge, so the anomalous difference signal is stable at 10 electrons despite the inherent energy jitter of each femtosecond X-ray laser pulse. This work demonstrates that this approach allows the determination of anomalous structure factors with very high accuracy while requiring an order-of-magnitude fewer shots than conventional integration-based methods would require to achieve similar results.
Collapse
Affiliation(s)
- Derek Mendez
- Molecular Biophysics and Integrated Bioimaging Division (MBIB), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Robert Bolotovsky
- Molecular Biophysics and Integrated Bioimaging Division (MBIB), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Asmit Bhowmick
- Molecular Biophysics and Integrated Bioimaging Division (MBIB), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Aaron S. Brewster
- Molecular Biophysics and Integrated Bioimaging Division (MBIB), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division (MBIB), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division (MBIB), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - James M. Holton
- Molecular Biophysics and Integrated Bioimaging Division (MBIB), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Department of Biochemistry and Biophysics, UC San Francisco, San Francisco, CA 94158, USA
| | - Nicholas K. Sauter
- Molecular Biophysics and Integrated Bioimaging Division (MBIB), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
9
|
Nass K, Cheng R, Vera L, Mozzanica A, Redford S, Ozerov D, Basu S, James D, Knopp G, Cirelli C, Martiel I, Casadei C, Weinert T, Nogly P, Skopintsev P, Usov I, Leonarski F, Geng T, Rappas M, Doré AS, Cooke R, Nasrollahi Shirazi S, Dworkowski F, Sharpe M, Olieric N, Bacellar C, Bohinc R, Steinmetz MO, Schertler G, Abela R, Patthey L, Schmitt B, Hennig M, Standfuss J, Wang M, Milne CJ. Advances in long-wavelength native phasing at X-ray free-electron lasers. IUCRJ 2020; 7:965-975. [PMID: 33209311 PMCID: PMC7642782 DOI: 10.1107/s2052252520011379] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/19/2020] [Indexed: 05/31/2023]
Abstract
Long-wavelength pulses from the Swiss X-ray free-electron laser (XFEL) have been used for de novo protein structure determination by native single-wavelength anomalous diffraction (native-SAD) phasing of serial femtosecond crystallography (SFX) data. In this work, sensitive anomalous data-quality indicators and model proteins were used to quantify improvements in native-SAD at XFELs such as utilization of longer wavelengths, careful experimental geometry optimization, and better post-refinement and partiality correction. Compared with studies using shorter wavelengths at other XFELs and older software versions, up to one order of magnitude reduction in the required number of indexed images for native-SAD was achieved, hence lowering sample consumption and beam-time requirements significantly. Improved data quality and higher anomalous signal facilitate so-far underutilized de novo structure determination of challenging proteins at XFELs. Improvements presented in this work can be used in other types of SFX experiments that require accurate measurements of weak signals, for example time-resolved studies.
Collapse
Affiliation(s)
- Karol Nass
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Robert Cheng
- LeadXpro AG, Park InnovAARE, Villigen, 5234, Switzerland
| | - Laura Vera
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Aldo Mozzanica
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Sophie Redford
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Dmitry Ozerov
- Science IT, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Shibom Basu
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Daniel James
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Gregor Knopp
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Claudio Cirelli
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Isabelle Martiel
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Cecilia Casadei
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Tobias Weinert
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Przemyslaw Nogly
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Wolfgang-Pauli-Strasse 27, Zürich, 8093, Switzerland
| | - Petr Skopintsev
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
- Department of Biology, ETH Zürich, Wolfgang-Pauli-Strasse 27, Zürich, 8093, Switzerland
| | - Ivan Usov
- Science IT, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Filip Leonarski
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Tian Geng
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Mathieu Rappas
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Andrew S. Doré
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Robert Cooke
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | | | - Florian Dworkowski
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - May Sharpe
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Natacha Olieric
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Camila Bacellar
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Rok Bohinc
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Michel O. Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
- Biozentrum, University of Basel, Basel, 4056, Switzerland
| | - Gebhard Schertler
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
- Department of Biology, ETH Zürich, Wolfgang-Pauli-Strasse 27, Zürich, 8093, Switzerland
| | - Rafael Abela
- LeadXpro AG, Park InnovAARE, Villigen, 5234, Switzerland
| | - Luc Patthey
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Bernd Schmitt
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Michael Hennig
- LeadXpro AG, Park InnovAARE, Villigen, 5234, Switzerland
| | - Jörg Standfuss
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Meitian Wang
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Christopher J. Milne
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| |
Collapse
|
10
|
El Omari K, Mohamad N, Bountra K, Duman R, Romano M, Schlegel K, Kwong HS, Mykhaylyk V, Olesen C, Moller JV, Bublitz M, Beis K, Wagner A. Experimental phasing with vanadium and application to nucleotide-binding membrane proteins. IUCRJ 2020; 7:1092-1101. [PMID: 33209320 PMCID: PMC7642786 DOI: 10.1107/s2052252520012312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
The structure determination of soluble and membrane proteins can be hindered by the crystallographic phase problem, especially in the absence of a suitable homologous structure. Experimental phasing is the method of choice for novel structures; however, it often requires heavy-atom derivatization, which can be difficult and time-consuming. Here, a novel and rapid method to obtain experimental phases for protein structure determination by vanadium phasing is reported. Vanadate is a transition-state mimic of phosphoryl-transfer reactions and it has the advantage of binding specifically to the active site of numerous enzymes catalyzing this reaction. The applicability of vanadium phasing has been validated by determining the structures of three different protein-vanadium complexes, two of which are integral membrane proteins: the rabbit sarcoplasmic reticulum Ca2+-ATPase, the antibacterial peptide ATP-binding cassette transporter McjD from Escherichia coli and the soluble enzyme RNAse A from Bos taurus. Vanadium phasing was successful even at low resolution and despite severe anisotropy in the data. This method is principally applicable to a large number of proteins, representing six of the seven Enzyme Commission classes. It relies exclusively on the specific chemistry of the protein and it does not require any modifications, making it a very powerful addition to the phasing toolkit. In addition to the phasing power of this technique, the protein-vanadium complexes also provide detailed insights into the reaction mechanisms of the studied proteins.
Collapse
Affiliation(s)
- Kamel El Omari
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Nada Mohamad
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Kiran Bountra
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Ramona Duman
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Maria Romano
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- Department of Life Sciences, Imperial College, London, United Kingdom
- Institute of Biostructures and Bioimaging, National Research Council (IBB–CNR), Via Mezzocannone 16, 80134 Napoli, Italy
| | - Katja Schlegel
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Hok-Sau Kwong
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Vitaliy Mykhaylyk
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Claus Olesen
- Department of Biomedicine, Aarhus University, Ole Worms Allé 8, DK-8000 Aarhus, Denmark
| | - Jesper Vuust Moller
- Department of Biomedicine, Aarhus University, Ole Worms Allé 8, DK-8000 Aarhus, Denmark
| | - Maike Bublitz
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Konstantinos Beis
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Armin Wagner
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| |
Collapse
|
11
|
Liebschner D. Towards the automation of in situ experimental phasing. Acta Crystallogr D Struct Biol 2020; 76:802-804. [PMID: 32876055 PMCID: PMC7466749 DOI: 10.1107/s205979832001178x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A new approach to in situ experimental phasing introduced by Lawrence et al. (2020, Acta Cryst. D76, 790–801) will be helpful for the macromolecular crystallography community.
Collapse
|
12
|
Vollmar M, Parkhurst JM, Jaques D, Baslé A, Murshudov GN, Waterman DG, Evans G. The predictive power of data-processing statistics. IUCRJ 2020; 7:342-354. [PMID: 32148861 PMCID: PMC7055369 DOI: 10.1107/s2052252520000895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
This study describes a method to estimate the likelihood of success in determining a macromolecular structure by X-ray crystallography and experimental single-wavelength anomalous dispersion (SAD) or multiple-wavelength anomalous dispersion (MAD) phasing based on initial data-processing statistics and sample crystal properties. Such a predictive tool can rapidly assess the usefulness of data and guide the collection of an optimal data set. The increase in data rates from modern macromolecular crystallography beamlines, together with a demand from users for real-time feedback, has led to pressure on computational resources and a need for smarter data handling. Statistical and machine-learning methods have been applied to construct a classifier that displays 95% accuracy for training and testing data sets compiled from 440 solved structures. Applying this classifier to new data achieved 79% accuracy. These scores already provide clear guidance as to the effective use of computing resources and offer a starting point for a personalized data-collection assistant.
Collapse
Affiliation(s)
- Melanie Vollmar
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - James M. Parkhurst
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England
| | - Dominic Jaques
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Arnaud Baslé
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 1HH, England
| | - Garib N. Murshudov
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England
| | - David G. Waterman
- Science Technology and Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0FA, England
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, England
| | - Gwyndaf Evans
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| |
Collapse
|
13
|
Brewster AS, Bhowmick A, Bolotovsky R, Mendez D, Zwart PH, Sauter NK. SAD phasing of XFEL data depends critically on the error model. Acta Crystallogr D Struct Biol 2019; 75:959-968. [PMID: 31692470 PMCID: PMC6834081 DOI: 10.1107/s2059798319012877] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/17/2019] [Indexed: 11/11/2022] Open
Abstract
A nonlinear least-squares method for refining a parametric expression describing the estimated errors of reflection intensities in serial crystallographic (SX) data is presented. This approach, which is similar to that used in the rotation method of crystallographic data collection at synchrotrons, propagates error estimates from photon-counting statistics to the merged data. Here, it is demonstrated that the application of this approach to SX data provides better SAD phasing ability, enabling the autobuilding of a protein structure that had previously failed to be built. Estimating the error in the merged reflection intensities requires the understanding and propagation of all of the sources of error arising from the measurements. One type of error, which is well understood, is the counting error introduced when the detector counts X-ray photons. Thus, if other types of random errors (such as readout noise) as well as uncertainties in systematic corrections (such as from X-ray attenuation) are completely understood, they can be propagated along with the counting error, as appropriate. In practice, most software packages propagate as much error as they know how to model and then include error-adjustment terms that scale the error estimates until they explain the variance among the measurements. If this is performed carefully, then during SAD phasing likelihood-based approaches can make optimal use of these error estimates, increasing the chance of a successful structure solution. In serial crystallography, SAD phasing has remained challenging, with the few examples of de novo protein structure solution each requiring many thousands of diffraction patterns. Here, the effects of different methods of treating the error estimates are estimated and it is shown that using a parametric approach that includes terms proportional to the known experimental uncertainty, the reflection intensity and the squared reflection intensity to improve the error estimates can allow SAD phasing even from weak zinc anomalous signal.
Collapse
Affiliation(s)
- Aaron S. Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Asmit Bhowmick
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Robert Bolotovsky
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Derek Mendez
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Petrus H. Zwart
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Center for Advanced Mathematics for Energy Research Applications, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nicholas K. Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
14
|
Saotome M, Horikoshi N, Urano K, Kujirai T, Yuzurihara H, Kurumizaka H, Kagawa W. Structure determination of the nucleosome core particle by selenium SAD phasing. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:930-936. [PMID: 31588924 DOI: 10.1107/s2059798319012713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/12/2019] [Indexed: 11/10/2022]
Abstract
The eukaryotic genome is compacted inside the nucleus of the cell in the form called chromatin. The fundamental unit of chromatin is the nucleosome, which contains four types of histones (H3, H4, H2A and H2B) and approximately 150 base pairs of DNA wrapped around the histone complex. The structure of the nucleosome is highly conserved across several eukaryotic species, and molecular replacement has been the primary phasing method used to solve nucleosome structures by X-ray crystallography. However, there is currently no simple, widely applicable experimental phasing method for the nucleosome. In the present study, it is demonstrated that selenomethionine-incorporated histones H3, H2A and H2B can be reconstituted into nucleosomes and crystallized for structural determination. Unexpectedly, it was found that the nucleosome can be phased with a relatively small number of Se atoms. The structures of nucleosome core particles containing 12 and 16 Se atoms were solved by SAD phasing at 2.5 and 2.4 Å resolution, respectively. The present study demonstrates a simple method for determining nucleosome structures by experimental phasing, which may be particularly useful for noncanonical structures that cannot be solved by molecular replacement.
Collapse
Affiliation(s)
- Mika Saotome
- Department of Chemistry, Graduate School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino-shi, Tokyo 191-8506, Japan
| | - Naoki Horikoshi
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Kazuki Urano
- Department of Chemistry, Graduate School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino-shi, Tokyo 191-8506, Japan
| | - Tomoya Kujirai
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hidetaka Yuzurihara
- Department of Chemistry, Graduate School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino-shi, Tokyo 191-8506, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Wataru Kagawa
- Department of Chemistry, Graduate School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino-shi, Tokyo 191-8506, Japan
| |
Collapse
|
15
|
Liebschner D, Afonine PV, Baker ML, Bunkóczi G, Chen VB, Croll TI, Hintze B, Hung LW, Jain S, McCoy AJ, Moriarty NW, Oeffner RD, Poon BK, Prisant MG, Read RJ, Richardson JS, Richardson DC, Sammito MD, Sobolev OV, Stockwell DH, Terwilliger TC, Urzhumtsev AG, Videau LL, Williams CJ, Adams PD. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D Struct Biol 2019; 75:861-877. [PMID: 31588918 PMCID: PMC6778852 DOI: 10.1107/s2059798319011471] [Citation(s) in RCA: 4127] [Impact Index Per Article: 687.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/15/2019] [Indexed: 12/16/2022] Open
Abstract
Diffraction (X-ray, neutron and electron) and electron cryo-microscopy are powerful methods to determine three-dimensional macromolecular structures, which are required to understand biological processes and to develop new therapeutics against diseases. The overall structure-solution workflow is similar for these techniques, but nuances exist because the properties of the reduced experimental data are different. Software tools for structure determination should therefore be tailored for each method. Phenix is a comprehensive software package for macromolecular structure determination that handles data from any of these techniques. Tasks performed with Phenix include data-quality assessment, map improvement, model building, the validation/rebuilding/refinement cycle and deposition. Each tool caters to the type of experimental data. The design of Phenix emphasizes the automation of procedures, where possible, to minimize repetitive and time-consuming manual tasks, while default parameters are chosen to encourage best practice. A graphical user interface provides access to many command-line features of Phenix and streamlines the transition between programs, project tracking and re-running of previous tasks.
Collapse
Affiliation(s)
- Dorothee Liebschner
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Pavel V. Afonine
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Matthew L. Baker
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gábor Bunkóczi
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, England
| | - Vincent B. Chen
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Tristan I. Croll
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, England
| | - Bradley Hintze
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Li-Wei Hung
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Swati Jain
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Airlie J. McCoy
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, England
| | - Nigel W. Moriarty
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Robert D. Oeffner
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, England
| | - Billy K. Poon
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Randy J. Read
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, England
| | | | | | - Massimo D. Sammito
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, England
| | - Oleg V. Sobolev
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Duncan H. Stockwell
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, England
| | - Thomas C. Terwilliger
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Alexandre G. Urzhumtsev
- Centre for Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS–INSERM–UdS, 67404 Illkirch, France
- Faculté des Sciences et Technologies, Université de Lorraine, BP 239, 54506 Vandoeuvre-lès-Nancy, France
| | | | | | - Paul D. Adams
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
16
|
Basu S, Finke A, Vera L, Wang M, Olieric V. Making routine native SAD a reality: lessons from beamline X06DA at the Swiss Light Source. Acta Crystallogr D Struct Biol 2019; 75:262-271. [PMID: 30950397 PMCID: PMC6450063 DOI: 10.1107/s2059798319003103] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 03/01/2019] [Indexed: 01/19/2023] Open
Abstract
Native single-wavelength anomalous dispersion (SAD) is the most attractive de novo phasing method in macromolecular crystallography, as it directly utilizes intrinsic anomalous scattering from native crystals. However, the success of such an experiment depends on accurate measurements of the reflection intensities and therefore on careful data-collection protocols. Here, the low-dose, multiple-orientation data-collection protocol for native SAD phasing developed at beamline X06DA (PXIII) at the Swiss Light Source is reviewed, and its usage over the last four years on conventional crystals (>50 µm) is reported. Being experimentally very simple and fast, this method has gained popularity and has delivered 45 de novo structures to date (13 of which have been published). Native SAD is currently the primary choice for experimental phasing among X06DA users. The method can address challenging cases: here, native SAD phasing performed on a streptavidin-biotin crystal with P21 symmetry and a low Bijvoet ratio of 0.6% is highlighted. The use of intrinsic anomalous signals as sequence markers for model building and the assignment of ions is also briefly described.
Collapse
Affiliation(s)
- Shibom Basu
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Aaron Finke
- MacCHESS, Cornell University, Ithaca, New York, USA
| | - Laura Vera
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, Switzerland
| |
Collapse
|
17
|
Foos N, Cianci M, Nanao MH. Choosing your (Friedel) mates wisely: grouping data sets to improve anomalous signal. Acta Crystallogr D Struct Biol 2019; 75:200-210. [PMID: 30821708 PMCID: PMC6400255 DOI: 10.1107/s205979831801570x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/06/2018] [Indexed: 11/11/2022] Open
Abstract
Single-wavelength anomalous diffraction (SAD) phasing from multiple crystals can be especially challenging in samples with weak anomalous signals and/or strong non-isomorphism. Here, advantage is taken of the combinatorial diversity possible in such experiments to study the relationship between merging statistics and downstream metrics of phasing signals. It is furthermore shown that a genetic algorithm (GA) can be used to optimize the grouping of data sets to enhance weak anomalous signals based on these merging statistics.
Collapse
Affiliation(s)
- Nicolas Foos
- Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Max H. Nanao
- Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| |
Collapse
|
18
|
Eliseev IE, Yudenko AN, Ukrainskaya VM, Chakchir OB. Cadmium SAD phasing at CuKα wavelength. F1000Res 2019; 8:84. [PMID: 30984381 PMCID: PMC6446493 DOI: 10.12688/f1000research.17694.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/08/2019] [Indexed: 12/03/2022] Open
Abstract
Single-wavelength anomalous diffraction (SAD) is the most common method for de novo elucidation of macromolecular structures by X-ray crystallography. It requires an anomalous scatterer in a crystal to calculate phases. A recent study by Panneerselvam et al. emphasized the utility of cadmium ions for SAD phasing at the standard synchrotron wavelength of 1 Å. Here we show that cadmium is also useful for phasing of crystals collected in-house with CuKα radiation. Using a crystal of single-domain antibody as an experimental model, we demonstrate how cadmium SAD can be conveniently employed to solve a CuKα dataset. We then discuss the factors which make this method generally applicable.
Collapse
Affiliation(s)
- Igor E. Eliseev
- St. Petersburg National Research Academic University RAS, St. Petersburg, 194021, Russian Federation
| | - Anna N. Yudenko
- St. Petersburg National Research Academic University RAS, St. Petersburg, 194021, Russian Federation
| | - Valeria M. Ukrainskaya
- St. Petersburg National Research Academic University RAS, St. Petersburg, 194021, Russian Federation
| | - Oleg B. Chakchir
- St. Petersburg National Research Academic University RAS, St. Petersburg, 194021, Russian Federation
| |
Collapse
|
19
|
Leonarski F, Redford S, Mozzanica A, Lopez-Cuenca C, Panepucci E, Nass K, Ozerov D, Vera L, Olieric V, Buntschu D, Schneider R, Tinti G, Froejdh E, Diederichs K, Bunk O, Schmitt B, Wang M. Fast and accurate data collection for macromolecular crystallography using the JUNGFRAU detector. Nat Methods 2018; 15:799-804. [PMID: 30275593 DOI: 10.1038/s41592-018-0143-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/25/2018] [Indexed: 11/09/2022]
Abstract
The accuracy of X-ray diffraction data is directly related to how the X-ray detector records photons. Here we describe the application of a direct-detection charge-integrating pixel-array detector (JUNGFRAU) in macromolecular crystallography (MX). JUNGFRAU features a uniform response on the subpixel level, linear behavior toward high photon rates, and low-noise performance across the whole dynamic range. We demonstrate that these features allow accurate MX data to be recorded at unprecedented speed. We also demonstrate improvements over previous-generation detectors in terms of data quality, using native single-wavelength anomalous diffraction (SAD) phasing, for thaumatin, lysozyme, and aminopeptidase N. Our results suggest that the JUNGFRAU detector will substantially improve the performance of synchrotron MX beamlines and equip them for future synchrotron light sources.
Collapse
Affiliation(s)
- Filip Leonarski
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Sophie Redford
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Aldo Mozzanica
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | | | | | - Karol Nass
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Dmitry Ozerov
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Laura Vera
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Dominik Buntschu
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Roman Schneider
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Gemma Tinti
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Erik Froejdh
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Kay Diederichs
- Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| | - Oliver Bunk
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Bernd Schmitt
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland.
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland.
| |
Collapse
|
20
|
Huang CY, Olieric V, Howe N, Warshamanage R, Weinert T, Panepucci E, Vogeley L, Basu S, Diederichs K, Caffrey M, Wang M. In situ serial crystallography for rapid de novo membrane protein structure determination. Commun Biol 2018; 1:124. [PMID: 30272004 PMCID: PMC6123769 DOI: 10.1038/s42003-018-0123-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/19/2018] [Indexed: 11/30/2022] Open
Abstract
De novo membrane protein structure determination is often limited by the availability of large crystals and the difficulties in obtaining accurate diffraction data for experimental phasing. Here we present a method that combines in situ serial crystallography with de novo phasing for fast, efficient membrane protein structure determination. The method enables systematic diffraction screening and rapid data collection from hundreds of microcrystals in in meso crystallization wells without the need for direct crystal harvesting. The requisite data quality for experimental phasing is achieved by accumulating diffraction signals from isomorphous crystals identified post-data collection. The method works in all experimental phasing scenarios and is particularly attractive with fragile, weakly diffracting microcrystals. The automated serial data collection approach can be readily adopted at most microfocus macromolecular crystallography beamlines.
Collapse
Affiliation(s)
- Chia-Ying Huang
- Swiss Light Source, Paul Scherrer Institute, CH-5232, Villigen, Switzerland
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institute, CH-5232, Villigen, Switzerland
| | - Nicole Howe
- Membrane Structural and Functional Biology (MS&FB) Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, D02 R590, Ireland
| | | | - Tobias Weinert
- Swiss Light Source, Paul Scherrer Institute, CH-5232, Villigen, Switzerland
| | - Ezequiel Panepucci
- Swiss Light Source, Paul Scherrer Institute, CH-5232, Villigen, Switzerland
| | - Lutz Vogeley
- Membrane Structural and Functional Biology (MS&FB) Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, D02 R590, Ireland
| | - Shibom Basu
- Swiss Light Source, Paul Scherrer Institute, CH-5232, Villigen, Switzerland
| | - Kay Diederichs
- Fachbereich Biologie, Universität Konstanz, M647, D-78457, Konstanz, Germany
| | - Martin Caffrey
- Membrane Structural and Functional Biology (MS&FB) Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, D02 R590, Ireland.
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institute, CH-5232, Villigen, Switzerland.
| |
Collapse
|
21
|
Read RJ, McCoy AJ. Maximum-likelihood determination of anomalous substructures. Acta Crystallogr D Struct Biol 2018; 74:98-105. [PMID: 29533235 PMCID: PMC5947773 DOI: 10.1107/s2059798317013468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/20/2017] [Indexed: 11/10/2022] Open
Abstract
A fast Fourier transform (FFT) method is described for determining the substructure of anomalously scattering atoms in macromolecular crystals that allows successful structure determination by X-ray single-wavelength anomalous diffraction (SAD). This method is based on the maximum-likelihood SAD phasing function, which accounts for measurement errors and for correlations between the observed and calculated Bijvoet mates. Proof of principle is shown that this method can improve determination of the anomalously scattering substructure in challenging cases where the anomalous scattering from the substructure is weak but the substructure also constitutes a significant fraction of the real scattering. The method is deterministic and can be fast compared with existing multi-trial dual-space methods for SAD substructure determination.
Collapse
Affiliation(s)
- Randy J. Read
- Department of Haematology, University of Cambridge, Hills Road, Cambridge CB2 0XY, England
| | - Airlie J. McCoy
- Department of Haematology, University of Cambridge, Hills Road, Cambridge CB2 0XY, England
| |
Collapse
|
22
|
Skubák P. Substructure determination using phase-retrieval techniques. Acta Crystallogr D Struct Biol 2018; 74:117-124. [PMID: 29533237 PMCID: PMC5947775 DOI: 10.1107/s2059798317014462] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/06/2017] [Indexed: 11/15/2022] Open
Abstract
Thus far, the application of phase-retrieval methods in crystallography has mainly been aimed at variants of charge flipping or structure-factor flipping. In this work, the relaxed averaged alternating reflections (RAAR) algorithm is applied to determine anomalously scattering substructures from single-wavelength anomalous diffraction (SAD) data of macromolecules. The algorithm has been implemented in a new program, PRASA, and has been shown to significantly outperform charge flipping in determining anomalously scattering substructures on a test sample of 169 SAD data sets with resolutions up to 3.88 Å.
Collapse
Affiliation(s)
- Pavol Skubák
- Biophysical Structural Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
23
|
Usón I, Sheldrick GM. An introduction to experimental phasing of macromolecules illustrated by SHELX; new autotracing features. Acta Crystallogr D Struct Biol 2018; 74:106-116. [PMID: 29533236 PMCID: PMC5947774 DOI: 10.1107/s2059798317015121] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/17/2017] [Indexed: 11/10/2022] Open
Abstract
For the purpose of this article, experimental phasing is understood to mean the determination of macromolecular structures by exploiting small intensity differences of Friedel opposites and possibly of reflections measured at different wavelengths or for heavy-atom derivatives, without the use of specific structural models. The SHELX programs provide a robust and efficient route for routine structure solution by the SAD, MAD and related methods, but involve a number of simplifying assumptions that may limit their applicability in borderline cases. The substructure atoms (i.e. those with significant anomalous scattering) are first located by direct methods, and the experimental data are then used to estimate phase shifts that are added to the substructure phases to obtain starting phases for the native reflections. These are then improved by density modification and, if the resolution of the data and the type of structure permit, polyalanine tracing. A number of extensions to the tracing algorithm are discussed; these are designed to improve its performance at low resolution. Given native data to 2.5 Å resolution or better, a correlation coefficient greater than 25% between the structure factors calculated from such a trace and the native data is usually a good indication that the structure has been solved.
Collapse
Affiliation(s)
- Isabel Usón
- Structural Biology, IBMB–CSIC, Baldiri Reixach 13-15, 08028 Barcelona, Spain
- ICREA, Baldiri Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - George M. Sheldrick
- Department of Structural Chemistry, Georg-August Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| |
Collapse
|
24
|
Olczak A, Cianci M. The signal-to-noise ratio in SAD experiments. CRYSTALLOGR REV 2017. [DOI: 10.1080/0889311x.2017.1386182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Andrzej Olczak
- Institute of General and Ecological Chemistry, Lodz University of Technology, Lodz, Poland
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
25
|
Abstract
A synopsis of and prospects for de novo phasing using diffraction data collected at X-ray free-electron lasers are given.
Collapse
|
26
|
Hegde RP, Fedorov AA, Sauder JM, Burley SK, Almo SC, Ramagopal UA. The hidden treasure in your data: phasing with unexpected weak anomalous scatterers from routine data sets. Acta Crystallogr F Struct Biol Commun 2017; 73:184-195. [PMID: 28368276 PMCID: PMC5379167 DOI: 10.1107/s2053230x17002680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/16/2017] [Indexed: 12/25/2022] Open
Abstract
Single-wavelength anomalous dispersion (SAD) utilizing anomalous signal from native S atoms, or other atoms with Z ≤ 20, generally requires highly redundant data collected using relatively long-wavelength X-rays. Here, the results from two proteins are presented where the anomalous signal from serendipitously acquired surface-bound Ca atoms with an anomalous data multiplicity of around 10 was utilized to drive de novo structure determination. In both cases, the Ca atoms were acquired from the crystallization solution, and the data-collection strategy was not optimized to exploit the anomalous signal from these scatterers. The X-ray data were collected at 0.98 Å wavelength in one case and at 1.74 Å in the other (the wavelength was optimized for sulfur, but the anomalous signal from calcium was exploited for structure solution). Similarly, using a test case, it is shown that data collected at ∼1.0 Å wavelength, where the f'' value for sulfur is 0.28 e, are sufficient for structure determination using intrinsic S atoms from a strongly diffracting crystal. Interestingly, it was also observed that SHELXD was capable of generating a substructure solution from high-exposure data with a completeness of 70% for low-resolution reflections extending to 3.5 Å resolution with relatively low anomalous multiplicity. Considering the fact that many crystallization conditions contain anomalous scatterers such as Cl, Ca, Mn etc., checking for the presence of fortuitous anomalous signal in data from well diffracting crystals could prove useful in either determining the structure de novo or in accurately assigning surface-bound atoms.
Collapse
Affiliation(s)
- Raghurama P. Hegde
- Division of Biological Sciences, Poornaprajna Institute of Scientific Research, #4, 16th Cross, Sadashivnagar, Bangalore 560 080, India
| | - Alexander A. Fedorov
- Department of Biochemistry, Albert Einstein College of Medicine, Ullmann Building, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Bronx, New York, NY 10461, USA
| | - J. Michael Sauder
- Lilly Biotechnology Center, Eli Lilly and Company, 10290 Campus Point Drive, San Diego, CA 92121, USA
| | - Stephen K. Burley
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers University, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
- Institute of Quantitative Biomedicine, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, Rutgers University, The State University of New Jersey, New Brunswick, NJ 08903, USA
- RCSB Protein Data Bank, San Diego Supercomputer Center, San Diego, California, USA
- Skaggs School of Pharmacy and Pharmceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Ullmann Building, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Bronx, New York, NY 10461, USA
| | - Udupi A. Ramagopal
- Division of Biological Sciences, Poornaprajna Institute of Scientific Research, #4, 16th Cross, Sadashivnagar, Bangalore 560 080, India
| |
Collapse
|
27
|
Thorn A. Experimental Phasing: Substructure Solution and Density Modification as Implemented in SHELX. Methods Mol Biol 2017; 1607:357-376. [PMID: 28573581 DOI: 10.1007/978-1-4939-7000-1_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This chapter describes experimental phasing methods as implemented in SHELX. After introducing fundamental concepts underlying all experimental phasing approaches, the methods used by SHELXC/D/E are described in greater detail, such as dual-space direct methods, Patterson seeding and density modification with the sphere of influence algorithm. Intensity differences from data for experimental phasing can also be used for the generation and usage of difference maps with ANODE for validation and phasing purposes. A short section describes how molecular replacement can be combined with experimental phasing methods. The second half covers practical challenges, such as prerequisites for successful experimental phasing, evaluation of potential solutions, and what to do if substructure search or density modification fails. It is also shown how auto-tracing in SHELXE can improve automation and how it ties in with automatic model building after phasing.
Collapse
Affiliation(s)
- Andrea Thorn
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, Hamburg, 22761, Germany.
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK.
| |
Collapse
|
28
|
Luo Z. Selenourea: a convenient phasing vehicle for macromolecular X-ray crystal structures. Sci Rep 2016; 6:37123. [PMID: 27841370 PMCID: PMC5107899 DOI: 10.1038/srep37123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/14/2016] [Indexed: 11/13/2022] Open
Abstract
Majority of novel X-ray crystal structures of proteins are currently solved using the anomalous diffraction signal provided by selenium after incorporation of selenomethionine instead of natural methionine by genetic engineering methods. However, selenium can be inserted into protein crystals in the form of selenourea (SeC(NH2)2), by adding the crystalline powder of selenourea into mother liquor or cryo-solution with native crystals, in analogy to the classic procedure of heavy-atom derivatization. Selenourea is able to bind to reactive groups at the surface of macromolecules primarily through hydrogen bonds, where the selenium atom may serve as acceptor and amide groups as donors. Selenourea has different chemical properties than heavy-atom reagents and halide ions and provides a convenient way of phasing crystal structures of macromolecules.
Collapse
Affiliation(s)
- Zhipu Luo
- Synchrotron Radiation Research Section, National Cancer Institute, Argonne National Laboratory, Argonne, 60439, USA
| |
Collapse
|
29
|
Akey DL, Terwilliger TC, Smith JL. Efficient merging of data from multiple samples for determination of anomalous substructure. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2016; 72:296-302. [PMID: 26960117 PMCID: PMC4784661 DOI: 10.1107/s2059798315021920] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 11/17/2015] [Indexed: 11/30/2022]
Abstract
The benefits of using local scaling and optimization of anomalous signal (as implemented in PHENIX) for merging data sets from many crystals for determination of the substructure for weak anomalous scatterers are examined. Merging of data from multiple crystals has proven to be useful for determination of the anomalously scattering atomic substructure for crystals with weak anomalous scatterers (e.g. S and P) and/or poor diffraction. Strategies for merging data from many samples, which require assessment of sample isomorphism, rely on metrics of variability in unit-cell parameters, anomalous signal correlation and overall data similarity. Local scaling, anomalous signal optimization and data-set weighting, implemented in phenix.scale_and_merge, provide an efficient protocol for merging data from many samples. The protein NS1 was used in a series of trials with data collected from 28 samples for phasing by single-wavelength anomalous diffraction of the native S atoms. The local-scaling, anomalous-optimization protocol produced merged data sets with higher anomalous signal quality indicators than did standard global-scaling protocols. The local-scaled data were also more successful in substructure determination. Merged data quality was assessed for data sets where the multiplicity was reduced in either of two ways: by excluding data from individual crystals (to reduce errors owing to non-isomorphism) or by excluding the last-recorded segments of data from each crystal (to minimize the effects of radiation damage). The anomalous signal was equivalent at equivalent multiplicity for the two procedures, and structure-determination success correlated with anomalous signal metrics. The quality of the anomalous signal was strongly correlated with data multiplicity over a range of 12-fold to 150-fold multiplicity. For the NS1 data, the local-scaling and anomalous-optimization protocol handled sample non-isomorphism and radiation-induced decay equally well.
Collapse
Affiliation(s)
- David L Akey
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216, USA
| | - Thomas C Terwilliger
- Bioscience Division, Los Alamos National Laboratory, Mail Stop M888, Los Alamos, NM 87545, USA
| | - Janet L Smith
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216, USA
| |
Collapse
|
30
|
Terwilliger TC, Bunkóczi G, Hung LW, Zwart PH, Smith JL, Akey DL, Adams PD. Can I solve my structure by SAD phasing? Planning an experiment, scaling data and evaluating the useful anomalous correlation and anomalous signal. Acta Crystallogr D Struct Biol 2016; 72:359-74. [PMID: 26960123 PMCID: PMC4784667 DOI: 10.1107/s2059798315019403] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 10/13/2015] [Indexed: 01/15/2023] Open
Abstract
A key challenge in the SAD phasing method is solving a structure when the anomalous signal-to-noise ratio is low. Here, algorithms and tools for evaluating and optimizing the useful anomalous correlation and the anomalous signal in a SAD experiment are described. A simple theoretical framework [Terwilliger et al. (2016), Acta Cryst. D72, 346-358] is used to develop methods for planning a SAD experiment, scaling SAD data sets and estimating the useful anomalous correlation and anomalous signal in a SAD data set. The phenix.plan_sad_experiment tool uses a database of solved and unsolved SAD data sets and the expected characteristics of a SAD data set to estimate the probability that the anomalous substructure will be found in the SAD experiment and the expected map quality that would be obtained if the substructure were found. The phenix.scale_and_merge tool scales unmerged SAD data from one or more crystals using local scaling and optimizes the anomalous signal by identifying the systematic differences among data sets, and the phenix.anomalous_signal tool estimates the useful anomalous correlation and anomalous signal after collecting SAD data and estimates the probability that the data set can be solved and the likely figure of merit of phasing.
Collapse
Affiliation(s)
- Thomas C. Terwilliger
- Bioscience Division, Los Alamos National Laboratory, Mail Stop M888, Los Alamos, NM 87545, USA
| | - Gábor Bunkóczi
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge CB2 0XY, England
| | - Li-Wei Hung
- Physics Division, Los Alamos National Laboratory, Mail Stop D454, Los Alamos, NM 87545, USA
| | - Peter H. Zwart
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Janet L. Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - David L. Akey
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Paul D. Adams
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|