2
|
Mehrabi P, Bücker R, Bourenkov G, Ginn HM, von Stetten D, Müller-Werkmeister HM, Kuo A, Morizumi T, Eger BT, Ou WL, Oghbaey S, Sarracini A, Besaw JE, Pare-Labrosse O, Meier S, Schikora H, Tellkamp F, Marx A, Sherrell DA, Axford D, Owen RL, Ernst OP, Pai EF, Schulz EC, Miller RJD. Serial femtosecond and serial synchrotron crystallography can yield data of equivalent quality: A systematic comparison. SCIENCE ADVANCES 2021; 7:7/12/eabf1380. [PMID: 33731353 PMCID: PMC7968842 DOI: 10.1126/sciadv.abf1380] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/28/2021] [Indexed: 05/09/2023]
Abstract
For the two proteins myoglobin and fluoroacetate dehalogenase, we present a systematic comparison of crystallographic diffraction data collected by serial femtosecond (SFX) and serial synchrotron crystallography (SSX). To maximize comparability, we used the same batch of micron-sized crystals, the same sample delivery device, and the same data analysis software. Overall figures of merit indicate that the data of both radiation sources are of equivalent quality. For both proteins, reasonable data statistics can be obtained with approximately 5000 room-temperature diffraction images irrespective of the radiation source. The direct comparability of SSX and SFX data indicates that the quality of diffraction data obtained from these samples is linked to the properties of the crystals rather than to the radiation source. Therefore, for other systems with similar properties, time-resolved experiments can be conducted at the radiation source that best matches the desired time resolution.
Collapse
Affiliation(s)
- P Mehrabi
- Department for Atomically Resolved Dynamics, Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany.
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - R Bücker
- Department for Atomically Resolved Dynamics, Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Centre for Structural Systems Biology, Department of Chemistry, University of Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - G Bourenkov
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, D-22603 Hamburg, Germany
| | - H M Ginn
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - D von Stetten
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, D-22603 Hamburg, Germany
| | - H M Müller-Werkmeister
- Institute of Chemistry-Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - A Kuo
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - T Morizumi
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - B T Eger
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - W-L Ou
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - S Oghbaey
- Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - A Sarracini
- Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - J E Besaw
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
- Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - O Pare-Labrosse
- Department for Atomically Resolved Dynamics, Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - S Meier
- Department of Physics, Universität Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
| | - H Schikora
- Scientific Support Unit Machine Physics, Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - F Tellkamp
- Scientific Support Unit Machine Physics, Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - A Marx
- Department for Atomically Resolved Dynamics, Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - D A Sherrell
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA
| | - D Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - R L Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - O P Ernst
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - E F Pai
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - E C Schulz
- Department for Atomically Resolved Dynamics, Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany.
- Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - R J D Miller
- Department for Atomically Resolved Dynamics, Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
- Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Physics, Universität Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
| |
Collapse
|
3
|
Yoshimura M, Chen NC, Guan HH, Chuankhayan P, Lin CC, Nakagawa A, Chen CJ. Noncrystallographic symmetry-constrained map obtained by direct density optimization. Acta Crystallogr D Struct Biol 2020; 76:147-154. [PMID: 32038045 PMCID: PMC7008515 DOI: 10.1107/s2059798319017297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 12/27/2019] [Indexed: 11/11/2022] Open
Abstract
Noncrystallographic symmetry (NCS) averaging following molecular-replacement phasing is generally the major technique used to solve a structure with several molecules in one asymmetric unit, such as a spherical icosahedral viral particle. As an alternative method to NCS averaging, a new approach to optimize or to refine the electron density directly under NCS constraints is proposed. This method has the same effect as the conventional NCS-averaging method but does not include the process of Fourier synthesis to generate the electron density from amplitudes and the corresponding phases. It has great merit for the solution of structures with limited data that are either twinned or incomplete at low resolution. This method was applied to the case of the T = 1 shell-domain subviral particle of Penaeus vannamei nodavirus with data affected by twinning using the REFMAC5 refinement software.
Collapse
Affiliation(s)
- Masato Yoshimura
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Nai-Chi Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Hong-Hsiang Guan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Phimonphan Chuankhayan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Chien-Chih Lin
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Atsushi Nakagawa
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Chun-Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
- Department of Physics, National Tsing Hua University, Hsinchu 30043, Taiwan
| |
Collapse
|