1
|
Vacilotto MM, de Araujo Montalvão L, Pellegrini VDOA, Liberato MV, de Araujo EA, Polikarpov I. Two-domain GH30 xylanase from human gut microbiota as a tool for enzymatic production of xylooligosaccharides: Crystallographic structure and a synergy with GH11 xylosidase. Carbohydr Polym 2024; 337:122141. [PMID: 38710568 DOI: 10.1016/j.carbpol.2024.122141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/21/2024] [Accepted: 04/07/2024] [Indexed: 05/08/2024]
Abstract
Production of value-added compounds and sustainable materials from agro-industrial residues is essential for better waste management and building of circular economy. This includes valorization of hemicellulosic fraction of plant biomass, the second most abundant biopolymer from plant cell walls, aiming to produce prebiotic oligosaccharides, widely explored in food and feed industries. In this work, we conducted biochemical and biophysical characterization of a prokaryotic two-domain R. champanellensis xylanase from glycoside hydrolase (GH) family 30 (RcXyn30A), and evaluated its applicability for XOS production from glucuronoxylan in combination with two endo-xylanases from GH10 and GH11 families and a GH11 xylobiohydrolase. RcXyn30A liberates mainly long monoglucuronylated xylooligosaccharides and is inefficient in cleaving unbranched oligosaccharides. Crystallographic structure of RcXyn30A catalytic domain was solved and refined to 1.37 Å resolution. Structural analysis of the catalytic domain releveled that its high affinity for glucuronic acid substituted xylan is due to the coordination of the substrate decoration by several hydrogen bonds and ionic interactions in the subsite -2. Furthermore, the protein has a larger β5-α5 loop as compared to other GH30 xylanases, which might be crucial for creating an additional aglycone subsite (+3) of the catalytic site. Finally, RcXyn30A activity is synergic to that of GH11 xylobiohydrolase.
Collapse
Affiliation(s)
- Milena Moreira Vacilotto
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil
| | - Lucas de Araujo Montalvão
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil
| | | | - Marcelo Vizona Liberato
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil
| | - Evandro Ares de Araujo
- Centro Nacional de Pesquisa em Energia e Materiais, Giuseppe Máximo Scolfaro 10000, 13083-100 Campinas, SP, Brazil
| | - Igor Polikarpov
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil.
| |
Collapse
|
2
|
Mendonça M, Barroca M, Collins T. Endo-1,4-β-xylanase-containing glycoside hydrolase families: Characteristics, singularities and similarities. Biotechnol Adv 2023; 65:108148. [PMID: 37030552 DOI: 10.1016/j.biotechadv.2023.108148] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
Endo-1,4-β-xylanases (EC 3.2.1.8) are O-glycoside hydrolases that cleave the internal β-1,4-D-xylosidic linkages of the complex plant polysaccharide xylan. They are produced by a vast array of organisms where they play critical roles in xylan saccharification and plant cell wall hydrolysis. They are also important industrial biocatalysts with widespread application. A large and ever growing number of xylanases with wildly different properties and functionalites are known and a better understanding of these would enable a more effective use in various applications. The Carbohydrate-Active enZYmes database (CAZy), which classifies evolutionarily related proteins into a glycoside hydrolase family-subfamily organisational scheme has proven powerful in understanding these enzymes. Nevertheless, ambiguity currently exists as to the number of glycoside hydrolase families and subfamilies harbouring catalytic domains with true endoxylanase activity and as to the specific characteristics of each of these families/subfamilies. This review seeks to clarify this, identifying 9 glycoside hydrolase families containing enzymes with endo-1,4-β-xylanase activity and discussing their properties, similarities, differences and biotechnological perspectives. In particular, substrate specificities and hydrolysis patterns and the structural determinants of these are detailed, with taxonomic aspects of source organisms being also presented. Shortcomings in current knowledge and research areas that require further clarification are highlighted and suggestions for future directions provided. This review seeks to motivate further research on these enzymes and especially of the lesser known endo-1,4-β-xylanase containing families. A better understanding of these enzymes will serve as a foundation for the knowledge-based development of process-fitted endo-1,4-β-xylanases and will accelerate their development for use with even the most recalcitrant of substrates in the biobased industries of the future.
Collapse
|
3
|
Structural and functional insights into the glycoside hydrolase family 30 xylanase of the rumen bacterium Ruminococcus flavefaciens. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
St John FJ, Crooks C, Kim Y, Tan K, Joachimiak A. The first crystal structure of a xylobiose-bound xylobiohydrolase with high functional specificity from the bacterial glycoside hydrolase 30 subfamily 10. FEBS Lett 2022; 596:2449-2464. [PMID: 35876256 DOI: 10.1002/1873-3468.14454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 11/05/2022]
Abstract
Xylobiose is a prebiotic sugar that has applications in functional foods. This report describes the first X-ray crystallographic structure models of apo and xylobiose bound forms of a xylobiohydrolase (XBH) from Acetivibrio clariflavus. This xylan active enzyme, a member of the recently described glycoside hydrolase family 30 (GH30) subfamily 10 phylogenetic clade has been shown to strictly release xylobiose as its primary hydrolysis product. Inspection of the apo-structure reveals a glycone region X2 binding slot. When X2 binds, the nonreducing xylose in the -2 subsite is highly coordinated with numerous hydrogen bond contacts while contacts in the -1 subsite mostly reflect interactions typical for GH30 and enzymes in clan A of the carbohydrate-active enzymes database (CAZy). This structure provides an explanation for the high functional specificity of this new bacterial GH30 XBH subfamily.
Collapse
Affiliation(s)
- Franz J St John
- Institute for Microbial and Biochemical Technology, Forest Products Laboratory, USDA Forest Service, Madison, WI, 53726, USA
| | - Casey Crooks
- Institute for Microbial and Biochemical Technology, Forest Products Laboratory, USDA Forest Service, Madison, WI, 53726, USA
| | - Youngchang Kim
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, Il, 60439, USA
| | - Kemin Tan
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, Il, 60439, USA
| | - Andrzej Joachimiak
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, Il, 60439, USA.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
5
|
Crooks C, Bechle NJ, St John FJ. A New Subfamily of Glycoside Hydrolase Family 30 with Strict Xylobiohydrolase Function. Front Mol Biosci 2021; 8:714238. [PMID: 34557520 PMCID: PMC8453022 DOI: 10.3389/fmolb.2021.714238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
The Acetivibrio clariflavus (basonym: Clostridium clariflavum) glycoside hydrolase family 30 cellulosomal protein encoded by the Clocl_1795 gene was highly represented during growth on cellulosic substrates. In this report, the recombinantly expressed protein has been characterized and shown to be a non-reducing terminal (NRT)-specific xylobiohydrolase (AcXbh30A). Biochemical function, optimal biophysical parameters, and phylogeny were investigated. The findings indicate that AcXbh30A strictly cleaves xylobiose from the NRT up until an α-1,2-linked glucuronic acid (GA)-decorated xylose if the number of xyloses is even or otherwise a single xylose will remain resulting in a penultimate GA-substituted xylose. Unlike recently reported xylobiohydrolases, AcXbh30A has no other detectable hydrolysis products under our optimized reaction conditions. Sequence analysis indicates that AcXbh30A represents a new GH30 subfamily. This new xylobiohydrolase may be useful for commercial production of industrial quantities of xylobiose.
Collapse
Affiliation(s)
- Casey Crooks
- Institute for Microbial and Biochemical Technology, Forest Products Laboratory, USDA Forest Service, Madison, WI, United States
| | - Nathan J Bechle
- Engineering Mechanics and Remote Sensing Laboratory, Forest Products Laboratory, USDA Forest Service, Madison, WI, United States
| | - Franz J St John
- Institute for Microbial and Biochemical Technology, Forest Products Laboratory, USDA Forest Service, Madison, WI, United States
| |
Collapse
|
6
|
A novel bacterial GH30 xylobiohydrolase from Hungateiclostridium clariflavum. Appl Microbiol Biotechnol 2020; 105:185-195. [PMID: 33215261 DOI: 10.1007/s00253-020-11023-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/23/2020] [Accepted: 11/12/2020] [Indexed: 10/23/2022]
Abstract
Typical bacterial GH30 xylanases are glucuronoxylanases requiring 4-O-methylglucuronic acid (MeGlcA) substitution of a xylan main chain for their action. They do not exhibit a significant activity on neutral xylooligosaccharides, arabinoxylan (AraX), or rhodymenan (Rho). In this work, the biochemical characterization of the bacterial Clocl_1795 xylanase from Hungateiclostridium (Clostridium) clariflavum DSM 19732 (HcXyn30A) is presented. Amino acid sequence analysis of HcXyn30A revealed that the enzyme does not contain amino acids known to be responsible for MeGlcA coordination in the -2b subsite of glucuronoxylanases. This suggested that the catalytic properties of HcXyn30A may differ from those of glucuronoxylanases. HcXyn30A shows similar specific activity on glucuronoxylan (GX) and Rho, while the specific activity on AraX is about 1000 times lower. HcXyn30A releases Xyl2 as the main product from the non-reducing end of different polymeric and oligomeric substrates. Catalytic properties of HcXyn30A resemble the properties of the fungal GH30 xylobiohydrolase from Acremonium alcalophilum, AaXyn30A. HcXyn30A is the first representative of a prokaryotic xylobiohydrolase. Its unique specificity broadens the catalytic diversity of bacterial GH30 xylanases. KEY POINTS: • Bacterial GH30 xylobiohydrolase from H. clariflavum (HcXyn30A) has been characterized. • HcXyn30A releases xylobiose from the non-reducing end of different substrates. • HcXyn30A is the first representative of bacterial xylobiohydrolase.
Collapse
|
7
|
Sharma K, Fontes CMGA, Najmudin S, Goyal A. Molecular organization and protein stability of the Clostridium thermocellum glucuronoxylan endo-β-1,4-xylanase of family 30 glycoside hydrolase in solution. J Struct Biol 2019; 206:335-344. [PMID: 30959107 DOI: 10.1016/j.jsb.2019.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 11/19/2022]
Abstract
Glucuronoxylan-β-1,4-xylanohydrolase from Clostridium thermocellum (CtXynGH30) hydrolyzes β-1,4-xylosidic linkages in 4-O-Methyl-D-glucuronoxylan. CtXynGH30 comprises an N-terminal catalytic domain, CtXyn30A, joined by a typical linker sequence to a family 6 carbohydrate-binding module, termed CtCBM6. ITC, mass spectrometric and enzyme activity analyses of CtXyn30A:CtCBM6 (1:1 M ratio), CtXyn30A and CtXynGH30 showed that the linker peptide plays a key role in connecting and orienting CtXyn30A and CtCBM6 modules resulting in the enhanced activity of CtXynGH30. To visualize the disposition of the two protein domains of CtXynGH30, SAXS analysis revealed that CtXynGH30 is monomeric and has a boot-shaped molecular envelope in solution with a Dmax of 18 nm and Rg of 3.6 nm. Kratky plot displayed the protein in a fully folded and flexible state. The ab initio derived dummy atom model of CtXynGH30 superposed well with the modelled structure.
Collapse
Affiliation(s)
- Kedar Sharma
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Carlos M G A Fontes
- CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Shabir Najmudin
- CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Arun Goyal
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
8
|
Katsimpouras C, Dedes G, Thomaidis NS, Topakas E. A novel fungal GH30 xylanase with xylobiohydrolase auxiliary activity. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:120. [PMID: 31110561 PMCID: PMC6511221 DOI: 10.1186/s13068-019-1455-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/29/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND The main representatives of hemicellulose are xylans, usually decorated β-1,4-linked d-xylose polymers, which are hydrolyzed by xylanases. The efficient utilization and complete hydrolysis of xylans necessitate the understanding of the mode of action of xylan degrading enzymes. The glycoside hydrolase family 30 (GH30) xylanases comprise a less studied group of such enzymes, and differences regarding the substrate recognition have been reported between fungal and bacterial GH30 xylanases. Besides their role in the utilization of lignocellulosic biomass for bioenergy, such enzymes could be used for the tailored production of prebiotic xylooligosaccharides (XOS) due to their substrate specificity. RESULTS The expression of a putative GH30_7 xylanase from the fungus Thermothelomyces thermophila (synonyms Myceliophthora thermophila, Sporotrichum thermophile) in Pichia pastoris resulted in the production and isolation of a novel xylanase with unique catalytic properties. The novel enzyme designated TtXyn30A, exhibited an endo- mode of action similar to that of bacterial GH30 xylanases that require 4-O-methyl-d-glucuronic acid (MeGlcA) decorations, in contrast to most characterized fungal ones. However, TtXyn30A also exhibited an exo-acting catalytic behavior by releasing the disaccharide xylobiose from the non-reducing end of XOS. The hydrolysis products from beechwood glucuronoxylan were MeGlcA substituted XOS, and xylobiose. The major uronic XOS (UXOS) were the aldotriuronic and aldotetrauronic acid after longer incubation indicating the ability of TtXyn30A to cleave linear parts of xylan and UXOS as well. CONCLUSIONS Hereby, we reported the heterologous production and biochemical characterization of a novel fungal GH30 xylanase exhibiting endo- and exo-xylanase activity. To date, considering its novel catalytic properties, TtXyn30A shows differences with most characterized fungal and bacterial GH30 xylanases. The discovered xylobiohydrolase mode of action offers new insights into fungal enzymatic systems that are employed for the utilization of lignocellulosic biomass. The recombinant xylanase could be used for the production of X2 and UXOS from glucuronoxylan, which in turn would be utilized as prebiotics carrying manifold health benefits.
Collapse
Affiliation(s)
- Constantinos Katsimpouras
- Industrial Biotechnology & Biocatalysis Group, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Grigorios Dedes
- Industrial Biotechnology & Biocatalysis Group, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Nikolaos S. Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
- Biochemical and Chemical Process Engineering, Division of Sustainable Process Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| |
Collapse
|
9
|
A plasmid borne, functionally novel glycoside hydrolase family 30 subfamily 8 endoxylanase from solventogenic Clostridium. Biochem J 2018; 475:1533-1551. [PMID: 29626157 PMCID: PMC5934979 DOI: 10.1042/bcj20180050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 11/24/2022]
Abstract
Glycoside hydrolase family 30 subfamily 8 (GH30-8) β-1,4-endoxylanases are known for their appendage-dependent function requiring recognition of an α-1,2-linked glucuronic acid (GlcA) common to glucuronoxylans for hydrolysis. Structural studies have indicated that the GlcA moiety of glucuronoxylans is coordinated through six hydrogen bonds and a salt bridge. These GlcA-dependent endoxylanases do not have significant activity on xylans that do not bear GlcA substitutions such as unsubstituted linear xylooligosaccharides or cereal bran arabinoxylans. In the present study, we present the structural and biochemical characteristics of xylanase 30A from Clostridium acetobutylicum (CaXyn30A) which was originally selected for study due to predicted structural differences within the GlcA coordination loops. Amino acid sequence comparisons indicated that this Gram-positive-derived GH30-8 more closely resembles Gram-negative derived forms of these endoxylanases: a hypothesis borne out in the developed crystallographic structure model of the CaXyn30A catalytic domain (CaXyn30A-CD). CaXyn30A-CD hydrolyzes xylans to linear and substituted oligoxylosides showing the greatest rate with the highly arabinofuranose (Araf)-substituted cereal arabinoxylans. CaXyn30A-CD hydrolyzes xylooligosaccharides larger than xylotriose and shows an increased relative rate of hydrolysis for xylooligosaccharides containing α-1,2-linked arabinofuranose substitutions. Biochemical analysis confirms that CaXyn30A benefits from five xylose-binding subsites which extend from the −3 subsite to the +2 subsite of the binding cleft. These studies indicate that CaXyn30A is a GlcA-independent endoxylanase that may have evolved for the preferential recognition of α-1,2-Araf substitutions on xylan chains.
Collapse
|
10
|
Xylanase 30 A from Clostridium thermocellum functions as a glucuronoxylan xylanohydrolase. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2017.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|