1
|
Lundgren KJM, Caldararu O, Oksanen E, Ryde U. Quantum refinement in real and reciprocal space using the Phenix and ORCA software. IUCRJ 2024; 11:921-937. [PMID: 39345101 PMCID: PMC11533993 DOI: 10.1107/s2052252524008406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/23/2024] [Indexed: 10/01/2024]
Abstract
X-ray and neutron crystallography, as well as cryogenic electron microscopy (cryo-EM), are the most common methods to obtain atomic structures of biological macromolecules. A feature they all have in common is that, at typical resolutions, the experimental data need to be supplemented by empirical restraints, ensuring that the final structure is chemically reasonable. The restraints are accurate for amino acids and nucleic acids, but often less accurate for substrates, inhibitors, small-molecule ligands and metal sites, for which experimental data are scarce or empirical potentials are harder to formulate. This can be solved using quantum mechanical calculations for a small but interesting part of the structure. Such an approach, called quantum refinement, has been shown to improve structures locally, allow the determination of the protonation and oxidation states of ligands and metals, and discriminate between different interpretations of the structure. Here, we present a new implementation of quantum refinement interfacing the widely used structure-refinement software Phenix and the freely available quantum mechanical software ORCA. Through application to manganese superoxide dismutase and V- and Fe-nitrogenase, we show that the approach works effectively for X-ray and neutron crystal structures, that old results can be reproduced and structural discrimination can be performed. We discuss how the weight factor between the experimental data and the empirical restraints should be selected and how quantum mechanical quality measures such as strain energies should be calculated. We also present an application of quantum refinement to cryo-EM data for particulate methane monooxygenase and show that this may be the method of choice for metal sites in such structures because no accurate empirical restraints are currently available for metals.
Collapse
Affiliation(s)
| | - Octav Caldararu
- Department of Computational ChemistryLund UniversityChemical Centre, PO Box 124SE-221 00LundSweden
| | - Esko Oksanen
- Department of Computational ChemistryLund UniversityChemical Centre, PO Box 124SE-221 00LundSweden
| | - Ulf Ryde
- Department of Computational ChemistryLund UniversityChemical Centre, PO Box 124SE-221 00LundSweden
| |
Collapse
|
2
|
Zubatyuk R, Biczysko M, Ranasinghe K, Moriarty NW, Gokcan H, Kruse H, Poon BK, Adams PD, Waller MP, Roitberg AE, Isayev O, Afonine PV. AQuaRef: Machine learning accelerated quantum refinement of protein structures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.21.604493. [PMID: 39071315 PMCID: PMC11275739 DOI: 10.1101/2024.07.21.604493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Cryo-EM and X-ray crystallography provide crucial experimental data for obtaining atomic-detail models of biomacromolecules. Refining these models relies on library-based stereochemical restraints, which, in addition to being limited to known chemical entities, do not include meaningful noncovalent interactions relying solely on nonbonded repulsions. Quantum mechanical (QM) calculations could alleviate these issues but are too expensive for large molecules. We present a novel AI-enabled Quantum Refinement (AQuaRef) based on AIMNet2 neural network potential mimicking QM at substantially lower computational costs. By refining 41 cryo-EM and 30 X-ray structures, we show that this approach yields atomic models with superior geometric quality compared to standard techniques, while maintaining an equal or better fit to experimental data.
Collapse
Affiliation(s)
- Roman Zubatyuk
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Malgorzata Biczysko
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | | | - Nigel W. Moriarty
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8235, USA
| | - Hatice Gokcan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | - Billy K. Poon
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8235, USA
| | - Paul D. Adams
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8235, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA
| | | | - Adrian E. Roitberg
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Olexandr Isayev
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Pavel V. Afonine
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8235, USA
| |
Collapse
|
3
|
Liu Y, Biczysko M, Moriarty NW. A radical approach to radicals. Acta Crystallogr D Struct Biol 2022; 78:43-51. [PMID: 34981760 DOI: 10.1107/s2059798321010809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/18/2021] [Indexed: 11/10/2022] Open
Abstract
Nitroxide radicals are characterized by a long-lived spin-unpaired electronic ground state and are strongly sensitive to their chemical surroundings. Combined with electron paramagnetic resonance spectroscopy, these electronic features have led to the widespread application of nitroxide derivatives as spin labels for use in studying protein structure and dynamics. Site-directed spin labelling requires the incorporation of nitroxides into the protein structure, leading to a new protein-ligand molecular model. However, in protein crystallographic refinement nitroxides are highly unusual molecules with an atypical chemical composition. Because macromolecular crystallography is almost entirely agnostic to chemical radicals, their structural information is generally less accurate or even erroneous. In this work, proteins that contain an example of a radical compound (Chemical Component Dictionary ID MTN) from the nitroxide family were re-refined by defining its ideal structural parameters based on quantum-chemical calculations. The refinement results show that this procedure improves the MTN ligand geometries, while at the same time retaining higher agreement with experimental data.
Collapse
Affiliation(s)
- Youjia Liu
- International Center for Quantum and Molecular Structures, Shanghai University, Shanghai 200444, People's Republic of China
| | - Malgorzata Biczysko
- International Center for Quantum and Molecular Structures, Shanghai University, Shanghai 200444, People's Republic of China
| | - Nigel W Moriarty
- Molecular Biosciences and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8235, USA
| |
Collapse
|
4
|
Bergmann J, Oksanen E, Ryde U. Combining crystallography with quantum mechanics. Curr Opin Struct Biol 2021; 72:18-26. [PMID: 34392061 DOI: 10.1016/j.sbi.2021.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 11/19/2022]
Abstract
In standard crystallographic refinement of biomacromolecules, the crystallographic raw data are supplemented by empirical restraints that ensure that the structure makes chemical sense. These restraints are typically accurate for amino acids and nucleic acids, but less so for cofactors, substrates, inhibitors, ligands and metal sites. In quantum refinement, this potential is replaced by more accurate quantum mechanical (QM) calculations. Several implementations have been presented, differing in the level of QM and whether it is used for the entire structure or only for a site of particular interest. It has been shown that the method can improve and correct errors in crystal structures and that it can be used to determine protonation and tautomeric states of various ligands and to decide what is really seen in the structure by refining different interpretations and using standard crystallographic and QM quality measures to decide which fits the structure best.
Collapse
Affiliation(s)
- Justin Bergmann
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, SE-221 00 Lund, Sweden
| | - Esko Oksanen
- European Spallation Source ESS ERIC, P. O. Box 176, SE-221 00 Lund, Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, SE-221 00 Lund, Sweden.
| |
Collapse
|
5
|
Yan Z, Li X, Chung LW. Multiscale Quantum Refinement Approaches for Metalloproteins. J Chem Theory Comput 2021; 17:3783-3796. [PMID: 34032440 DOI: 10.1021/acs.jctc.1c00148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Biomolecules with metal ion(s) (e.g., metalloproteins) play many important biological roles. However, accurate structural determination of metalloproteins, particularly those containing transition metal ion(s), is challenging due to their complicated electronic structure, complex bonding of metal ions, and high number of conformations in biomolecules. Quantum refinement, which was proposed to combine crystallographic data with computational chemistry methods by several groups, can improve the local structures of some proteins. In this study, a quantum refinement method combining several multiscale computational schemes with experimental (X-ray diffraction) information was developed for metalloproteins. Various quantum refinement approaches using different ONIOM (our own N-layered integrated molecular orbital and molecular mechanics) combinations of quantum mechanics (QM), semiempirical (SE), and molecular mechanics (MM) methods were conducted to assess the performance and reliability on the refined local structure in two metalloproteins. The structures for two (Cu- or Zn-containing) metalloproteins were refined by combining two-layer ONIOM2(QM1/QM2) and ONIOM2(QM/MM) and three-layer ONIOM3(QM1/QM2/MM) schemes with experimental data. The accuracy of the quantum-refined metal binding sites was also examined and compared in these multiscale quantum refinement calculations. ONIOM3(QM/SE/MM) schemes were found to give good results with lower computational costs and were proposed to be a good choice for the multiscale computational scheme for quantum refinement calculations of metal binding site(s) in metalloproteins with high efficiency. Additionally, a two-center ONIOM approach was employed to speed up the quantum refinement calculations for the Zn metalloprotein with two remote active sites/ligands. Moreover, a recent quantum-embedding wavefunction-in-density functional theory (WF-in-DFT) method was also adopted as the high-level method in unprecedented ONIOM2(CCSD-in-B3LYP/MM) and ONIOM3(CCSD-in-B3LYP/SE/MM) calculations, which can be regarded as novel pseudo-three- and pseudo-four-layer ONIOM methods, respectively, to refine the key Zn binding site at the coupled-cluster singles and doubles (CCSD) level. These refined results indicate that multiscale quantum refinement schemes can be used to improve the structural accuracy obtained for local metal binding site(s) in metalloproteins with high efficiency.
Collapse
Affiliation(s)
- Zeyin Yan
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin Li
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lung Wa Chung
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
6
|
Borbulevych OY, Martin RI, Westerhoff LM. The critical role of QM/MM X-ray refinement and accurate tautomer/protomer determination in structure-based drug design. J Comput Aided Mol Des 2021; 35:433-451. [PMID: 33108589 PMCID: PMC8018927 DOI: 10.1007/s10822-020-00354-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/12/2020] [Indexed: 12/29/2022]
Abstract
Conventional protein:ligand crystallographic refinement uses stereochemistry restraints coupled with a rudimentary energy functional to ensure the correct geometry of the model of the macromolecule-along with any bound ligand(s)-within the context of the experimental, X-ray density. These methods generally lack explicit terms for electrostatics, polarization, dispersion, hydrogen bonds, and other key interactions, and instead they use pre-determined parameters (e.g. bond lengths, angles, and torsions) to drive structural refinement. In order to address this deficiency and obtain a more complete and ultimately more accurate structure, we have developed an automated approach for macromolecular refinement based on a two layer, QM/MM (ONIOM) scheme as implemented within our DivCon Discovery Suite and "plugged in" to two mainstream crystallographic packages: PHENIX and BUSTER. This implementation is able to use one or more region layer(s), which is(are) characterized using linear-scaling, semi-empirical quantum mechanics, followed by a system layer which includes the balance of the model and which is described using a molecular mechanics functional. In this work, we applied our Phenix/DivCon refinement method-coupled with our XModeScore method for experimental tautomer/protomer state determination-to the characterization of structure sets relevant to structure-based drug design (SBDD). We then use these newly refined structures to show the impact of QM/MM X-ray refined structure on our understanding of function by exploring the influence of these improved structures on protein:ligand binding affinity prediction (and we likewise show how we use post-refinement scoring outliers to inform subsequent X-ray crystallographic efforts). Through this endeavor, we demonstrate a computational chemistry ↔ structural biology (X-ray crystallography) "feedback loop" which has utility in industrial and academic pharmaceutical research as well as other allied fields.
Collapse
Affiliation(s)
- Oleg Y Borbulevych
- QuantumBio Inc, 2790 West College Ave, Suite 900, State College, PA, 16801, USA
| | - Roger I Martin
- QuantumBio Inc, 2790 West College Ave, Suite 900, State College, PA, 16801, USA
| | - Lance M Westerhoff
- QuantumBio Inc, 2790 West College Ave, Suite 900, State College, PA, 16801, USA.
| |
Collapse
|
7
|
Bergmann J, Oksanen E, Ryde U. Quantum-refinement studies of the bidentate ligand of V‑nitrogenase and the protonation state of CO-inhibited Mo‑nitrogenase. J Inorg Biochem 2021; 219:111426. [PMID: 33756394 DOI: 10.1016/j.jinorgbio.2021.111426] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/19/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
Nitrogenase is the only enzyme that can cleave the triple bond in N2, making nitrogen available to plants (although the enzyme itself is strictly microbial). It has been studied extensively with both experimental and computational methods, but many details of the reaction mechanism are still unclear. X-ray crystallography is the main source of structural information for biomacromolecules, but it has problems to discern hydrogen atoms or to distinguish between elements with the same number of electrons. These problems can sometimes be alleviated by introducing quantum chemical calculations in the refinement, providing information about the ideal structure (in the same way as the empirical restraints used in standard crystallographic refinement) and comparing different interpretations of the structure with normal crystallographic and quantum mechanical quality measures. We have performed such quantum-refinement calculations to address two important issues for nitrogenase. First, we show that the bidentate ligand of the active-site FeV cluster in V‑nitrogenase is carbonate, rather than bicarbonate or nitrate. Second, we study the CO-inhibited structure of Mo‑nitrogenase. CO binds to a reduced and protonated state of the enzyme by replacing one of the sulfide ions (S2B) in the active-site FeMo cluster. We examined if it is possible to deduce from the crystal structure the location of the protons. Our results indicates that the crystal structure is best modelled as fully deprotonated.
Collapse
Affiliation(s)
- Justin Bergmann
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Esko Oksanen
- European Spallation Source ESS ERIC, Lund, Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden.
| |
Collapse
|
8
|
Current and Future Challenges in Modern Drug Discovery. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2114:1-17. [PMID: 32016883 DOI: 10.1007/978-1-0716-0282-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Drug discovery is an expensive, time-consuming, and risky business. To avoid late-stage failure, learnings from past projects and the development of new approaches are crucial. New modalities and emerging new target spaces allow the exploration of unprecedented indications or to address so far undrugable targets. Late-stage attrition is usually attributed to the lack of efficacy or to compound-related safety issues. Efficacy has been shown to be related to a strong genetic link to human disease, a better understanding of the target biology, and the availability of biomarkers to bridge from animals to humans. Compound safety can be improved by ligand optimization, which is becoming increasingly demanding for difficult targets. Therefore, new strategies include the design of allosteric ligands, covalent binders, and other modalities. Design methods currently heavily rely on artificial intelligence and advanced computational methods such as free energy calculations and quantum chemistry. Especially for quantum chemical methods, a more detailed overview is given in this chapter.
Collapse
|
9
|
Wang L, Kruse H, Sobolev OV, Moriarty NW, Waller MP, Afonine PV, Biczysko M. Real-space quantum-based refinement for cryo-EM: Q|R#3. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:1184-1191. [PMID: 33263324 DOI: 10.1107/s2059798320013194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/29/2020] [Indexed: 11/10/2022]
Abstract
Electron cryo-microscopy (cryo-EM) is rapidly becoming a major competitor to X-ray crystallography, especially for large structures that are difficult or impossible to crystallize. While recent spectacular technological improvements have led to significantly higher resolution three-dimensional reconstructions, the average quality of cryo-EM maps is still at the low-resolution end of the range compared with crystallography. A long-standing challenge for atomic model refinement has been the production of stereochemically meaningful models for this resolution regime. Here, it is demonstrated that including accurate model geometry restraints derived from ab initio quantum-chemical calculations (HF-D3/6-31G) can improve the refinement of an example structure (chain A of PDB entry 3j63). The robustness of the procedure is tested for additional structures with up to 7000 atoms (PDB entry 3a5x and chain C of PDB entry 5fn5) using the less expensive semi-empirical (GFN1-xTB) model. The necessary algorithms enabling real-space quantum refinement have been implemented in the latest version of qr.refine and are described here.
Collapse
Affiliation(s)
- Lum Wang
- International Center for Quantum and Molecular Structures, Shanghai University, Shanghai 200444, People's Republic of China
| | - Holger Kruse
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Oleg V Sobolev
- Molecular Biosciences and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nigel W Moriarty
- Molecular Biosciences and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mark P Waller
- Pending AI Pty Ltd, iAccelerat, Innovation Campus, North Wollongong, NSW 2500, Australia
| | - Pavel V Afonine
- Molecular Biosciences and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Malgorzata Biczysko
- International Center for Quantum and Molecular Structures, Shanghai University, Shanghai 200444, People's Republic of China
| |
Collapse
|
10
|
Cao L, Ryde U. Quantum refinement with multiple conformations: application to the P-cluster in nitrogenase. Acta Crystallogr D Struct Biol 2020; 76:1145-1156. [PMID: 33135685 PMCID: PMC7604908 DOI: 10.1107/s2059798320012917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 09/21/2020] [Indexed: 11/17/2022] Open
Abstract
X-ray crystallography is the main source of atomistic information on the structure of proteins. Normal crystal structures are obtained as a compromise between the X-ray scattering data and a set of empirical restraints that ensure chemically reasonable bond lengths and angles. However, such restraints are not always available or accurate for nonstandard parts of the structure, for example substrates, inhibitors and metal sites. The method of quantum refinement, in which these empirical restraints are replaced by quantum-mechanical (QM) calculations, has previously been suggested for small but interesting parts of the protein. Here, this approach is extended to allow for multiple conformations in the QM region by performing separate QM calculations for each conformation. This approach is shown to work properly and leads to improved structures in terms of electron-density maps and real-space difference density Z-scores. It is also shown that the quality of the structures can be gauged using QM strain energies. The approach, called ComQumX-2QM, is applied to the P-cluster in two different crystal structures of the enzyme nitrogenase, i.e. an Fe8S7Cys6 cluster, used for electron transfer. One structure is at a very high resolution (1.0 Å) and shows a mixture of two different oxidation states, the fully reduced PN state (Fe82+, 20%) and the doubly oxidized P2+ state (80%). In the original crystal structure the coordinates differed for only two iron ions, but here it is shown that the two states also show differences in other atoms of up to 0.7 Å. The second structure is at a more modest resolution, 2.1 Å, and was originally suggested to show only the one-electron oxidized state, P1+. Here, it is shown that it is rather a 50/50% mixture of the P1+ and P2+ states and that many of the Fe-Fe and Fe-S distances in the original structure were quite inaccurate (by up to 0.8 Å). This shows that the new ComQumX-2QM approach can be used to sort out what is actually seen in crystal structures with dual conformations and to give locally improved coordinates.
Collapse
Affiliation(s)
- Lili Cao
- Department of Theoretical Chemistry, Lund University, PO Box 124, 221 00 Lund, Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, PO Box 124, 221 00 Lund, Sweden
| |
Collapse
|
11
|
Seritan S, Bannwarth C, Fales BS, Hohenstein EG, Isborn CM, Kokkila‐Schumacher SIL, Li X, Liu F, Luehr N, Snyder JW, Song C, Titov AV, Ufimtsev IS, Wang L, Martínez TJ. TeraChem
: A graphical processing unit
‐accelerated
electronic structure package for
large‐scale
ab initio molecular dynamics. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1494] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Stefan Seritan
- Department of Chemistry and the PULSE Institute Stanford University Stanford California USA
- SLAC National Accelerator Laboratory Menlo Park California USA
| | - Christoph Bannwarth
- Department of Chemistry and the PULSE Institute Stanford University Stanford California USA
- SLAC National Accelerator Laboratory Menlo Park California USA
| | - Bryan S. Fales
- Department of Chemistry and the PULSE Institute Stanford University Stanford California USA
- SLAC National Accelerator Laboratory Menlo Park California USA
| | - Edward G. Hohenstein
- Department of Chemistry and the PULSE Institute Stanford University Stanford California USA
- SLAC National Accelerator Laboratory Menlo Park California USA
| | - Christine M. Isborn
- Department of Chemistry University of California Merced Merced California USA
| | | | - Xin Li
- Division of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology Stockholm Sweden
| | - Fang Liu
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge Massachusetts USA
| | | | | | - Chenchen Song
- Department of Physics University of California Berkeley Berkeley California USA
- Molecular Foundry Lawrence Berkeley National Laboratory Berkeley California USA
| | | | - Ivan S. Ufimtsev
- Department of Structural Biology Stanford University School of Medicine Stanford California USA
| | - Lee‐Ping Wang
- Department of Chemistry University of California Davis Davis California USA
| | - Todd J. Martínez
- Department of Chemistry and the PULSE Institute Stanford University Stanford California USA
- SLAC National Accelerator Laboratory Menlo Park California USA
| |
Collapse
|
12
|
Bergmann J, Davidson M, Oksanen E, Ryde U, Jayatilaka D. fragHAR: towards ab initio quantum-crystallographic X-ray structure refinement for polypeptides and proteins. IUCRJ 2020; 7:158-165. [PMID: 32148844 PMCID: PMC7055371 DOI: 10.1107/s2052252519015975] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/27/2019] [Indexed: 05/20/2023]
Abstract
The first ab initio aspherical structure refinement against experimental X-ray structure factors for polypeptides and proteins using a fragmentation approach to break up the protein into residues and solvent, thereby speeding up quantum-crystallographic Hirshfeld atom refinement (HAR) calculations, is described. It it found that the geometric and atomic displacement parameters from the new fragHAR method are essentially unchanged from a HAR on the complete unfragmented system when tested on dipeptides, tripeptides and hexapeptides. The largest changes are for the parameters describing H atoms involved in hydrogen-bond interactions, but it is shown that these discrepancies can be removed by including the interacting fragments as a single larger fragment in the fragmentation scheme. Significant speed-ups are observed for the larger systems. Using this approach, it is possible to perform a highly parallelized HAR in reasonable times for large systems. The method has been implemented in the TONTO software.
Collapse
Affiliation(s)
- Justin Bergmann
- Department of Theoretical Chemistry, Chemical Center, Lund University, PO Box 124, SE-221 00 Lund, Sweden
| | - Max Davidson
- School of Molecular Sciences M310, University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia
| | - Esko Oksanen
- Instruments Division, European Spallation Source ESS ERIC, PO Box 176, SE-221 00 Lund, Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry, Chemical Center, Lund University, PO Box 124, SE-221 00 Lund, Sweden
| | - Dylan Jayatilaka
- School of Molecular Sciences M310, University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia
| |
Collapse
|
13
|
Zheng M, Biczysko M, Xu Y, Moriarty NW, Kruse H, Urzhumtsev A, Waller MP, Afonine PV. Including crystallographic symmetry in quantum-based refinement: Q|R#2. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:41-50. [PMID: 31909742 DOI: 10.1107/s2059798319015122] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/08/2019] [Indexed: 11/11/2022]
Abstract
Three-dimensional structure models refined using low-resolution data from crystallographic or electron cryo-microscopy experiments can benefit from high-quality restraints derived from quantum-chemical methods. However, nonperiodic atom-centered quantum-chemistry codes do not inherently account for nearest-neighbor interactions of crystallographic symmetry-related copies in a satisfactory way. Here, these nearest-neighbor effects have been included in the model by expanding to a super-cell and then truncating the super-cell to only include residues from neighboring cells that are interacting with the asymmetric unit. In this way, the fragmentation approach can adequately and efficiently include nearest-neighbor effects. It has previously been shown that a moderately sized X-ray structure can be treated using quantum methods if a fragmentation approach is applied. In this study, a target protein (PDB entry 4gif) was partitioned into a number of large fragments. The use of large fragments (typically hundreds of atoms) is tractable when a GPU-based package such as TeraChem is employed or cheaper (semi-empirical) methods are used. The QM calculations were run at the HF-D3/6-31G level. The models refined using a recently developed semi-empirical method (GFN2-xTB) were compared and contrasted. To validate the refinement procedure for a non-P1 structure, a standard set of crystallographic metrics were used. The robustness of the implementation is shown by refining 13 additional protein models across multiple space groups and a summary of the refinement metrics is presented.
Collapse
Affiliation(s)
- Min Zheng
- International Center for Quantum and Molecular Structures, Shanghai University, Shanghai 200444, People's Republic of China
| | - Malgorzata Biczysko
- International Center for Quantum and Molecular Structures, Shanghai University, Shanghai 200444, People's Republic of China
| | - Yanting Xu
- International Center for Quantum and Molecular Structures, Shanghai University, Shanghai 200444, People's Republic of China
| | - Nigel W Moriarty
- Molecular Biosciences and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Holger Kruse
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Alexandre Urzhumtsev
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS-INSERM-UdS, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch, France
| | - Mark P Waller
- Pending AI Pty Ltd, iAccelerate, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia
| | - Pavel V Afonine
- Molecular Biosciences and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
14
|
Malaspina LA, Wieduwilt EK, Bergmann J, Kleemiss F, Meyer B, Ruiz-López MF, Pal R, Hupf E, Beckmann J, Piltz RO, Edwards AJ, Grabowsky S, Genoni A. Fast and Accurate Quantum Crystallography: From Small to Large, from Light to Heavy. J Phys Chem Lett 2019; 10:6973-6982. [PMID: 31633355 DOI: 10.1021/acs.jpclett.9b02646] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The coupling of the crystallographic refinement technique Hirshfeld atom refinement (HAR) with the recently constructed libraries of extremely localized molecular orbitals (ELMOs) gives rise to the new quantum-crystallographic method HAR-ELMO. This method is significantly faster than HAR but as accurate and precise, especially concerning the free refinement of hydrogen atoms from X-ray diffraction data, so that the first fully quantum-crystallographic refinement of a protein is presented here. However, the promise of HAR-ELMO exceeds large molecules and protein crystallography. In fact, it also renders possible electron-density investigations of heavy elements in small molecules and facilitates the detection and isolation of systematic errors from physical effects.
Collapse
Affiliation(s)
- Lorraine A Malaspina
- Institut für Anorganische Chemie und Kristallographie, Fachbereich 2 - Biologie/Chemie , Universität Bremen , Leobener Straße 3 und 7 , 28359 Bremen , Germany
| | - Erna K Wieduwilt
- Institut für Anorganische Chemie und Kristallographie, Fachbereich 2 - Biologie/Chemie , Universität Bremen , Leobener Straße 3 und 7 , 28359 Bremen , Germany
- Université de Lorraine , CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT) , 1 Boulevard Arago , 57078 Metz , France
| | - Justin Bergmann
- Institut für Anorganische Chemie und Kristallographie, Fachbereich 2 - Biologie/Chemie , Universität Bremen , Leobener Straße 3 und 7 , 28359 Bremen , Germany
| | - Florian Kleemiss
- Institut für Anorganische Chemie und Kristallographie, Fachbereich 2 - Biologie/Chemie , Universität Bremen , Leobener Straße 3 und 7 , 28359 Bremen , Germany
- Departement für Chemie und Biochemie , Universität Bern , Freiestrasse 3 , 3012 Bern , Switzerland
| | - Benjamin Meyer
- Université de Lorraine , CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT) , 1 Boulevard Arago , 57078 Metz , France
| | - Manuel F Ruiz-López
- Université de Lorraine , CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT) , 1 Boulevard Arago , 57078 Metz , France
| | - Rumpa Pal
- Institut für Anorganische Chemie und Kristallographie, Fachbereich 2 - Biologie/Chemie , Universität Bremen , Leobener Straße 3 und 7 , 28359 Bremen , Germany
| | - Emanuel Hupf
- Institut für Anorganische Chemie und Kristallographie, Fachbereich 2 - Biologie/Chemie , Universität Bremen , Leobener Straße 3 und 7 , 28359 Bremen , Germany
| | - Jens Beckmann
- Institut für Anorganische Chemie und Kristallographie, Fachbereich 2 - Biologie/Chemie , Universität Bremen , Leobener Straße 3 und 7 , 28359 Bremen , Germany
| | - Ross O Piltz
- Australian Nuclear Science and Technology Organisation , Australian Centre for Neutron Scattering , New Illawarra Road , Lucas Heights , NSW 2234 , Australia
| | - Alison J Edwards
- Australian Nuclear Science and Technology Organisation , Australian Centre for Neutron Scattering , New Illawarra Road , Lucas Heights , NSW 2234 , Australia
| | - Simon Grabowsky
- Institut für Anorganische Chemie und Kristallographie, Fachbereich 2 - Biologie/Chemie , Universität Bremen , Leobener Straße 3 und 7 , 28359 Bremen , Germany
- Departement für Chemie und Biochemie , Universität Bern , Freiestrasse 3 , 3012 Bern , Switzerland
| | - Alessandro Genoni
- Université de Lorraine , CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT) , 1 Boulevard Arago , 57078 Metz , France
| |
Collapse
|
15
|
Liebschner D, Afonine PV, Baker ML, Bunkóczi G, Chen VB, Croll TI, Hintze B, Hung LW, Jain S, McCoy AJ, Moriarty NW, Oeffner RD, Poon BK, Prisant MG, Read RJ, Richardson JS, Richardson DC, Sammito MD, Sobolev OV, Stockwell DH, Terwilliger TC, Urzhumtsev AG, Videau LL, Williams CJ, Adams PD. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D Struct Biol 2019; 75:861-877. [PMID: 31588918 PMCID: PMC6778852 DOI: 10.1107/s2059798319011471] [Citation(s) in RCA: 3910] [Impact Index Per Article: 782.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/15/2019] [Indexed: 12/16/2022] Open
Abstract
Diffraction (X-ray, neutron and electron) and electron cryo-microscopy are powerful methods to determine three-dimensional macromolecular structures, which are required to understand biological processes and to develop new therapeutics against diseases. The overall structure-solution workflow is similar for these techniques, but nuances exist because the properties of the reduced experimental data are different. Software tools for structure determination should therefore be tailored for each method. Phenix is a comprehensive software package for macromolecular structure determination that handles data from any of these techniques. Tasks performed with Phenix include data-quality assessment, map improvement, model building, the validation/rebuilding/refinement cycle and deposition. Each tool caters to the type of experimental data. The design of Phenix emphasizes the automation of procedures, where possible, to minimize repetitive and time-consuming manual tasks, while default parameters are chosen to encourage best practice. A graphical user interface provides access to many command-line features of Phenix and streamlines the transition between programs, project tracking and re-running of previous tasks.
Collapse
Affiliation(s)
- Dorothee Liebschner
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Pavel V. Afonine
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Matthew L. Baker
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gábor Bunkóczi
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, England
| | - Vincent B. Chen
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Tristan I. Croll
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, England
| | - Bradley Hintze
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Li-Wei Hung
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Swati Jain
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Airlie J. McCoy
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, England
| | - Nigel W. Moriarty
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Robert D. Oeffner
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, England
| | - Billy K. Poon
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Randy J. Read
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, England
| | | | | | - Massimo D. Sammito
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, England
| | - Oleg V. Sobolev
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Duncan H. Stockwell
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, England
| | - Thomas C. Terwilliger
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Alexandre G. Urzhumtsev
- Centre for Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS–INSERM–UdS, 67404 Illkirch, France
- Faculté des Sciences et Technologies, Université de Lorraine, BP 239, 54506 Vandoeuvre-lès-Nancy, France
| | | | | | - Paul D. Adams
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
16
|
Fedorov DG, Brekhov A, Mironov V, Alexeev Y. Molecular Electrostatic Potential and Electron Density of Large Systems in Solution Computed with the Fragment Molecular Orbital Method. J Phys Chem A 2019; 123:6281-6290. [DOI: 10.1021/acs.jpca.9b04936] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dmitri G. Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba, 305-8568, Japan
| | - Anton Brekhov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Vladimir Mironov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Yuri Alexeev
- Argonne Leadership Computing Facility and Computational Science Division, Argonne National Laboratory, Argonne, Illinois, 60439, United States
| |
Collapse
|
17
|
Caldararu O, Manzoni F, Oksanen E, Logan DT, Ryde U. Refinement of protein structures using a combination of quantum-mechanical calculations with neutron and X-ray crystallographic data. Acta Crystallogr D Struct Biol 2019; 75:368-380. [PMID: 30988254 PMCID: PMC6465982 DOI: 10.1107/s205979831900175x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/30/2019] [Indexed: 11/20/2022] Open
Abstract
Neutron crystallography is a powerful method to determine the positions of H atoms in macromolecular structures. However, it is sometimes hard to judge what would constitute a chemically reasonable model, and the geometry of H atoms depends more on the surroundings (for example the formation of hydrogen bonds) than heavy atoms, so that the empirical geometry information for the H atoms used to supplement the experimental data is often less accurate. These problems may be reduced by using quantum-mechanical calculations. A method has therefore been developed to combine quantum-mechanical calculations with joint crystallographic refinement against X-ray and neutron data. A first validation of this method is provided by re-refining the structure of the galectin-3 carbohydrate-recognition domain in complex with lactose. The geometry is improved, in particular for water molecules, for which the method leads to better-resolved hydrogen-bonding interactions. The method has also been applied to the active copper site of lytic polysaccharide monooxygenase and shows that the protonation state of the amino-terminal histidine residue can be determined.
Collapse
Affiliation(s)
- Octav Caldararu
- Department of Theoretical Chemistry, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| | - Francesco Manzoni
- Department of Theoretical Chemistry, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
- Department of Biochemistry and Structural Biology, Centre for Molecular Protein Science, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| | - Esko Oksanen
- Department of Biochemistry and Structural Biology, Centre for Molecular Protein Science, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
- Instruments Division, European Spallation Source ESS ERIC, PO Box 176, SE-221 00 Lund, Sweden
| | - Derek T. Logan
- Department of Biochemistry and Structural Biology, Centre for Molecular Protein Science, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
18
|
Lukac I, Abdelhakim H, Ward RA, St-Gallay SA, Madden JC, Leach AG. Predicting protein-ligand binding affinity and correcting crystal structures with quantum mechanical calculations: lactate dehydrogenase A. Chem Sci 2019; 10:2218-2227. [PMID: 30881647 PMCID: PMC6388092 DOI: 10.1039/c8sc04564j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022] Open
Abstract
Accurately computing the geometry and energy of host-guest and protein-ligand interactions requires a physically accurate description of the forces in action. Quantum mechanics can provide this accuracy but the calculations can require a prohibitive quantity of computational resources. The size of the calculations can be reduced by including only the atoms of the receptor that are in close proximity to the ligand. We show that when combined with log P values for the ligand (which can be computed easily) this approach can significantly improve the agreement between computed and measured binding energies. When the approach is applied to lactate dehydrogenase A, it can make quantitative predictions about conformational, tautomeric and protonation state preferences as well as stereoselectivity and even identifies potential errors in structures deposited in the Protein Data Bank for this enzyme. By broadening the evidence base for these structures from only the diffraction data, more chemically realistic structures can be proposed.
Collapse
Affiliation(s)
- Iva Lukac
- School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Byrom Street , Liverpool , L3 3AF , UK .
| | - Hend Abdelhakim
- School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Byrom Street , Liverpool , L3 3AF , UK .
| | - Richard A Ward
- Chemistry, Oncology, IMED Biotech Unit , AstraZeneca , Cambridge , UK
| | - Stephen A St-Gallay
- Sygnature Discovery Ltd , Bio City, Pennyfoot St , Nottingham , NG1 1GF , UK
| | - Judith C Madden
- School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Byrom Street , Liverpool , L3 3AF , UK .
| | - Andrew G Leach
- School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Byrom Street , Liverpool , L3 3AF , UK .
| |
Collapse
|
19
|
Genoni A, Bučinský L, Claiser N, Contreras-García J, Dittrich B, Dominiak PM, Espinosa E, Gatti C, Giannozzi P, Gillet JM, Jayatilaka D, Macchi P, Madsen AØ, Massa L, Matta CF, Merz KM, Nakashima PNH, Ott H, Ryde U, Schwarz K, Sierka M, Grabowsky S. Quantum Crystallography: Current Developments and Future Perspectives. Chemistry 2018; 24:10881-10905. [PMID: 29488652 DOI: 10.1002/chem.201705952] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/27/2018] [Indexed: 11/09/2022]
Abstract
Crystallography and quantum mechanics have always been tightly connected because reliable quantum mechanical models are needed to determine crystal structures. Due to this natural synergy, nowadays accurate distributions of electrons in space can be obtained from diffraction and scattering experiments. In the original definition of quantum crystallography (QCr) given by Massa, Karle and Huang, direct extraction of wavefunctions or density matrices from measured intensities of reflections or, conversely, ad hoc quantum mechanical calculations to enhance the accuracy of the crystallographic refinement are implicated. Nevertheless, many other active and emerging research areas involving quantum mechanics and scattering experiments are not covered by the original definition although they enable to observe and explain quantum phenomena as accurately and successfully as the original strategies. Therefore, we give an overview over current research that is related to a broader notion of QCr, and discuss options how QCr can evolve to become a complete and independent domain of natural sciences. The goal of this paper is to initiate discussions around QCr, but not to find a final definition of the field.
Collapse
Affiliation(s)
- Alessandro Genoni
- Université de Lorraine, CNRS, Laboratoire LPCT, 1 Boulevard Arago, F-57078, Metz, France
| | - Lukas Bučinský
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology, FCHPT SUT, Radlinského 9, SK-812 37, Bratislava, Slovakia
| | - Nicolas Claiser
- Université de Lorraine, CNRS, Laboratoire CRM2, Boulevard des Aiguillettes, BP 70239, F-54506, Vandoeuvre-lès-Nancy, France
| | - Julia Contreras-García
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Laboratoire de Chimie Théorique (LCT), 4 Place Jussieu, F-75252, Paris Cedex 05, France
| | - Birger Dittrich
- Anorganische und Strukturchemie II, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Paulina M Dominiak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, 02-089, Warszawa, Poland
| | - Enrique Espinosa
- Université de Lorraine, CNRS, Laboratoire CRM2, Boulevard des Aiguillettes, BP 70239, F-54506, Vandoeuvre-lès-Nancy, France
| | - Carlo Gatti
- CNR-ISTM Istituto di Scienze e Tecnologie Molecolari, via Golgi 19, Milano, I-20133, Italy.,Istituto Lombardo Accademia di Scienze e Lettere, via Brera 28, 20121, Milano, Italy
| | - Paolo Giannozzi
- Department of Mathematics, Computer Science and Physics, University of Udine, Via delle Scienze 208, I-33100, Udine, Italy
| | - Jean-Michel Gillet
- Structure, Properties and Modeling of Solids Laboratory, CentraleSupelec, Paris-Saclay University, 3 rue Joliot-Curie, 91191, Gif-sur-Yvette, France
| | - Dylan Jayatilaka
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Piero Macchi
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Anders Ø Madsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Lou Massa
- Hunter College & the Ph.D. Program of the Graduate Center, City University of New York, New York, USA
| | - Chérif F Matta
- Department of Chemistry and Physics, Mount Saint Vincent University, Halifax, Nova Scotia, B3M 2J6, Canada.,Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3, Canada.,Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada.,Département de Chimie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Kenneth M Merz
- Department of Chemistry and Department of Biochemistry and Molecular Biology, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan, 48824, USA.,Institute for Cyber Enabled Research, Michigan State University, 567 Wilson Road, Room 1440, East Lansing, Michigan, 48824, USA
| | - Philip N H Nakashima
- Department of Materials Science and Engineering, Monash University, Victoria, 3800, Australia
| | - Holger Ott
- Bruker AXS GmbH, Östliche Rheinbrückenstraße 49, 76187, Karlsruhe, Germany
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-22100, Lund, Sweden
| | - Karlheinz Schwarz
- Technische Universität Wien, Institut für Materialwissenschaften, Getreidemarkt 9, A-1060, Vienna, Austria
| | - Marek Sierka
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
| | - Simon Grabowsky
- Fachbereich 2-Biologie/Chemie, Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Str. 3, 28359, Bremen, Germany
| |
Collapse
|
20
|
Altan I, Fusco D, Afonine PV, Charbonneau P. Learning about Biomolecular Solvation from Water in Protein Crystals. J Phys Chem B 2018; 122:2475-2486. [DOI: 10.1021/acs.jpcb.7b09898] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Diana Fusco
- Department of Physics, University of California, Berkeley, California 94720, United States
| | - Pavel V. Afonine
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | |
Collapse
|
21
|
Zheng M, Moriarty NW, Xu Y, Reimers JR, Afonine PV, Waller MP. Solving the scalability issue in quantum-based refinement: Q|R#1. Acta Crystallogr D Struct Biol 2017; 73:1020-1028. [PMID: 29199981 PMCID: PMC5713877 DOI: 10.1107/s2059798317016746] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 11/20/2017] [Indexed: 12/27/2022] Open
Abstract
Accurately refining biomacromolecules using a quantum-chemical method is challenging because the cost of a quantum-chemical calculation scales approximately as nm, where n is the number of atoms and m (≥3) is based on the quantum method of choice. This fundamental problem means that quantum-chemical calculations become intractable when the size of the system requires more computational resources than are available. In the development of the software package called Q|R, this issue is referred to as Q|R#1. A divide-and-conquer approach has been developed that fragments the atomic model into small manageable pieces in order to solve Q|R#1. Firstly, the atomic model of a crystal structure is analyzed to detect noncovalent interactions between residues, and the results of the analysis are represented as an interaction graph. Secondly, a graph-clustering algorithm is used to partition the interaction graph into a set of clusters in such a way as to minimize disruption to the noncovalent interaction network. Thirdly, the environment surrounding each individual cluster is analyzed and any residue that is interacting with a particular cluster is assigned to the buffer region of that particular cluster. A fragment is defined as a cluster plus its buffer region. The gradients for all atoms from each of the fragments are computed, and only the gradients from each cluster are combined to create the total gradients. A quantum-based refinement is carried out using the total gradients as chemical restraints. In order to validate this interaction graph-based fragmentation approach in Q|R, the entire atomic model of an amyloid cross-β spine crystal structure (PDB entry 2oNA) was refined.
Collapse
Affiliation(s)
- Min Zheng
- International Center for Quantum and Molecular Structures, Shanghai University, Shanghai 200444, People’s Republic of China
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Nigel W. Moriarty
- Molecular Biosciences and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yanting Xu
- International Center for Quantum and Molecular Structures, Shanghai University, Shanghai 200444, People’s Republic of China
| | - Jeffrey R. Reimers
- International Center for Quantum and Molecular Structures, Shanghai University, Shanghai 200444, People’s Republic of China
- School of Mathematical and Physical Sciences, University of Technology Sydney, NSW 2007 Australia
| | - Pavel V. Afonine
- International Center for Quantum and Molecular Structures, Shanghai University, Shanghai 200444, People’s Republic of China
- Molecular Biosciences and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mark P. Waller
- International Center for Quantum and Molecular Structures, Shanghai University, Shanghai 200444, People’s Republic of China
| |
Collapse
|
22
|
ChemPreview : an augmented reality-based molecular interface. J Mol Graph Model 2017; 73:18-23. [DOI: 10.1016/j.jmgm.2017.01.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 11/19/2022]
|