1
|
Liu Y, Zhang N, Ma J, Zhou Y, Wei Q, Tian C, Fang Y, Zhong R, Chen G, Zhang S. Advances in cold-adapted enzymes derived from microorganisms. Front Microbiol 2023; 14:1152847. [PMID: 37180232 PMCID: PMC10169661 DOI: 10.3389/fmicb.2023.1152847] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
Cold-adapted enzymes, produced in cold-adapted organisms, are a class of enzyme with catalytic activity at low temperatures, high temperature sensitivity, and the ability to adapt to cold stimulation. These enzymes are largely derived from animals, plants, and microorganisms in polar areas, mountains, and the deep sea. With the rapid development of modern biotechnology, cold-adapted enzymes have been implemented in human and other animal food production, the protection and restoration of environments, and fundamental biological research, among other areas. Cold-adapted enzymes derived from microorganisms have attracted much attention because of their short production cycles, high yield, and simple separation and purification, compared with cold-adapted enzymes derived from plants and animals. In this review we discuss various types of cold-adapted enzyme from cold-adapted microorganisms, along with associated applications, catalytic mechanisms, and molecular modification methods, to establish foundation for the theoretical research and application of cold-adapted enzymes.
Collapse
Affiliation(s)
- Yehui Liu
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Na Zhang
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Jie Ma
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Yuqi Zhou
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Qiang Wei
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yi Fang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Rongzhen Zhong
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Guang Chen
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Sitong Zhang
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
2
|
Boumezber S, Yelekçi K. Screening of novel and selective inhibitors for neuronal nitric oxide synthase (nNOS) via structure-based drug design techniques. J Biomol Struct Dyn 2022; 41:3607-3629. [PMID: 35322764 DOI: 10.1080/07391102.2022.2054471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
NO, or nitric oxide, is produced by a family of enzymes called nitric oxide synthase (NOS) from L-arginine. NO regulates many physiological functions such as smooth muscle relaxation, immune defense, and memory function. The overproduction of NO by the neuronal isoform of nitric oxide synthase (nNOS) is implicated in neurodegeneration and neuropathic pain, making nNOS inhibition a promising therapeutic approach. Many developed nNOS inhibitors, generally L-arginine mimetics, have some issues in selectivity and bioavailability. According to earlier studies, targeting nNOS has the advantage of decreasing excess NO in the brain while avoiding the negative consequences of inhibiting the two isozymes: endothelial NOS (eNOS) and inducible NOS (iNOS). This study applied structure-based virtual screening, molecular docking, and molecular dynamics simulations to design potent and selective inhibitors against nNOS over related isoforms (eNOS and iNOS) using human X-ray crystal structures of the NOS isoforms. It was discovered that some compounds displayed a very good inhibitory potency for hnNOS and moderate selectivity for the other isozymes, eNOS and iNOS, in addition to good solubility and desirable physiochemical properties. The compounds which showed good stability and selectivity with nNOS, such as ZINC000013485422, can be interesting and informative guidance for designing more potent human nNOS inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sarah Boumezber
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey
| | - Kemal Yelekçi
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey
| |
Collapse
|
3
|
Wang L, Harper JK. Refining crystal structures using 13C NMR chemical shift tensors as a target function. CrystEngComm 2021. [DOI: 10.1039/d1ce00960e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A two-step process is described for refining crystal structures from any source.
Collapse
Affiliation(s)
- Luther Wang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo UT 84602, USA
| | - James K. Harper
- Department of Chemistry and Biochemistry, Brigham Young University, Provo UT 84602, USA
| |
Collapse
|
4
|
Huang X, Chen J, Fang X, Yan C, Shao H. Exploring the enhancement of electron tunneling induced by intermolecular interactions on surface of self-assembled monolayer. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Budday D, Leyendecker S, van den Bedem H. Kinematic Flexibility Analysis: Hydrogen Bonding Patterns Impart a Spatial Hierarchy of Protein Motion. J Chem Inf Model 2018; 58:2108-2122. [PMID: 30240209 DOI: 10.1021/acs.jcim.8b00267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Elastic network models (ENMs) and constraint-based, topological rigidity analysis are two distinct, coarse-grained approaches to study conformational flexibility of macromolecules. In the two decades since their introduction, both have contributed significantly to insights into protein molecular mechanisms and function. However, despite a shared purpose of these approaches, the topological nature of rigidity analysis, and thereby the absence of motion modes, has impeded a direct comparison. Here, we present an alternative, kinematic approach to rigidity analysis, which circumvents these drawbacks. We introduce a novel protein hydrogen bond network spectral decomposition, which provides an orthonormal basis for collective motions modulated by noncovalent interactions, analogous to the eigenspectrum of normal modes. The zero modes decompose proteins into rigid clusters identical to those from topological rigidity, while nonzero modes rank protein motions by their hydrogen bond collective energy penalty. Our kinematic flexibility analysis bridges topological rigidity theory and ENM, enabling a detailed analysis of motion modes obtained from both approaches. Analysis of a large, structurally diverse data set revealed that collectivity of protein motions, reported by the Shannon entropy, is significantly reduced for rigidity theory compared to normal mode approaches. Strikingly, kinematic flexibility analysis suggests that the hydrogen bonding network encodes a protein-fold specific, spatial hierarchy of motions, which goes nearly undetected in ENM. This hierarchy reveals distinct motion regimes that rationalize experimental and simulated protein stiffness variations. Kinematic motion modes highly correlate with reported crystallographic B factors and molecular dynamics simulations of adenylate kinase. A formal expression for changes in free energy derived from the spectral decomposition indicates that motions across nearly 40% of modes obey enthalpy-entropy compensation. Taken together, our results suggest that hydrogen bond networks have evolved to modulate protein structure and dynamics, which can be efficiently probed by kinematic flexibility analysis.
Collapse
Affiliation(s)
- Dominik Budday
- Chair of Applied Dynamics , University of Erlangen-Nuremberg , 91058 Erlangen , Germany
| | - Sigrid Leyendecker
- Chair of Applied Dynamics , University of Erlangen-Nuremberg , 91058 Erlangen , Germany
| | - Henry van den Bedem
- Biosciences Division, SLAC National Accelerator Laboratory , Stanford University , Menlo Park , California 94025 , United States.,Department of Bioengineering and Therapeutic Sciences , University of California , San Francisco , California 94158 , United States
| |
Collapse
|
6
|
Wlodawer A, Dauter Z. Do structures matter any more? FEBS J 2018; 285:3322-3323. [PMID: 30221844 DOI: 10.1111/febs.14630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This Editorial discusses some recent corrections to published structural data in which all conclusions were claimed to be valid even if the presented structures were wrong.
Collapse
Affiliation(s)
- Alexander Wlodawer
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, NCI, Argonne National Laboratory, IL, USA
| |
Collapse
|
7
|
Lee S, Wang C, Liu H, Xiong J, Jiji R, Hong X, Yan X, Chen Z, Hammel M, Wang Y, Dai S, Wang J, Jiang C, Zhang G. Hydrogen bonds are a primary driving force for de novo protein folding. Corrigendum. Acta Crystallogr D Struct Biol 2018; 74:380. [PMID: 29652265 PMCID: PMC5892881 DOI: 10.1107/s2059798318004047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The paper by Lee et al. [(2017). Acta Cryst. D73, 955-969] is withdrawn.
Collapse
Affiliation(s)
- Schuyler Lee
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO 80206, USA
| | - Chao Wang
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - Haolin Liu
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO 80206, USA
| | - Jian Xiong
- Department of Chemistry, University of Missouri, Columbus, Mississippi, USA
| | - Renee Jiji
- Department of Chemistry, University of Missouri, Columbus, Mississippi, USA
| | - Xia Hong
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - Xiaoxue Yan
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - Zhangguo Chen
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO 80206, USA
| | - Michal Hammel
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yang Wang
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO 80206, USA
| | - Shaodong Dai
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO 80206, USA
| | - Jing Wang
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO 80206, USA
| | - Chengyu Jiang
- Department of Biochemistry and Molecular Biology, Peking Union Medical College, Beijing 100005, People’s Republic of China
| | - Gongyi Zhang
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO 80206, USA
| |
Collapse
|
8
|
Ito F, Yang H, Xiao X, Li SX, Wolfe A, Zirkle B, Arutiunian V, Chen XS. Understanding the Structure, Multimerization, Subcellular Localization and mC Selectivity of a Genomic Mutator and Anti-HIV Factor APOBEC3H. Sci Rep 2018; 8:3763. [PMID: 29491387 PMCID: PMC5830531 DOI: 10.1038/s41598-018-21955-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/12/2018] [Indexed: 12/27/2022] Open
Abstract
APOBEC3H (A3H) is a member of the APOBEC3 subfamily of DNA cytosine deaminases that are important for innate immune defense and have been implicated in cancer biogenesis. To understand the structural basis for A3H biochemical function, we determined a high-resolution structure of human A3H and performed extensive biochemical analysis. The 2.49 Å crystal structure reveals a uniquely long C-terminal helix 6 (h6), a disrupted β5 strand of the canonical five-stranded β-sheet core, and a long loop 1 around the Zn-active center. Mutation of a loop 7 residue, W115, disrupted the RNA-mediated dimerization of A3H yielding an RNA-free monomeric form that still possessed nucleic acid binding and deaminase activity. A3H expressed in HEK293T cells showed RNA dependent HMW complex formation and RNase A-dependent deaminase activity. A3H has a highly positively charged surface surrounding the Zn-active center, and multiple positively charged residues within this charged surface play an important role in the RNA-mediated HMW formation and deaminase inhibition. Furthermore, these positively charged residues affect subcellular localization of A3H between the nucleus and cytosol. Finally, we have identified multiple residues of loop 1 and 7 that contribute to the overall deaminase activity and the methylcytosine selectivity.
Collapse
Affiliation(s)
- Fumiaki Ito
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Hanjing Yang
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Xiao Xiao
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.,Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.,Department of Infectious Diseases and Vaccines Research, Merck Research Laboratories, Merck & Co., Inc, West Point, PA, USA
| | - Shu-Xing Li
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.,Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA, 90089, USA
| | - Aaron Wolfe
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.,Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Brett Zirkle
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.,Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Vagan Arutiunian
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.,Department of Internal Medicine, Meharry Medical College, Nashville, TN, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA. .,Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA. .,Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA, 90089, USA. .,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|