1
|
Montserrat-Canals M, Cordara G, Krengel U. Allostery. Q Rev Biophys 2025; 58:e5. [PMID: 39849666 DOI: 10.1017/s0033583524000209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Allostery describes the ability of biological macromolecules to transmit signals spatially through the molecule from an allosteric site – a site that is distinct from orthosteric binding sites of primary, endogenous ligands – to the functional or active site. This review starts with a historical overview and a description of the classical example of allostery – hemoglobin – and other well-known examples (aspartate transcarbamoylase, Lac repressor, kinases, G-protein-coupled receptors, adenosine triphosphate synthase, and chaperonin). We then discuss fringe examples of allostery, including intrinsically disordered proteins and inter-enzyme allostery, and the influence of dynamics, entropy, and conformational ensembles and landscapes on allosteric mechanisms, to capture the essence of the field. Thereafter, we give an overview over central methods for investigating molecular mechanisms, covering experimental techniques as well as simulations and artificial intelligence (AI)-based methods. We conclude with a review of allostery-based drug discovery, with its challenges and opportunities: with the recent advent of AI-based methods, allosteric compounds are set to revolutionize drug discovery and medical treatments.
Collapse
Affiliation(s)
- Mateu Montserrat-Canals
- Department of Chemistry, University of Oslo, Oslo, Norway
- Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo, Norway
| | - Gabriele Cordara
- Department of Chemistry, University of Oslo, Oslo, Norway
- Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo, Norway
| | - Ute Krengel
- Department of Chemistry, University of Oslo, Oslo, Norway
- Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Guerrero L, Ebrahim A, Riley BT, Kim SH, Bishop AC, Wu J, Han YN, Tautz L, Keedy DA. Three STEPs forward: A trio of unexpected structures of PTPN5. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624168. [PMID: 39605455 PMCID: PMC11601604 DOI: 10.1101/2024.11.20.624168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Protein tyrosine phosphatases (PTPs) play pivotal roles in myriad cellular processes by counteracting protein tyrosine kinases. Striatal-enriched protein tyrosine phosphatase (STEP, PTPN5) regulates synaptic function and neuronal plasticity in the brain and is a therapeutic target for several neurological disorders. Here, we present three new crystal structures of STEP, each with unexpected features. These include high-resolution conformational heterogeneity at multiple sites, a highly coordinated citrate molecule that inhibits enzyme activity, a previously unseen conformational change at an allosteric site, an intramolecular disulfide bond that was characterized biochemically but had never been visualized structurally, and two serendipitous covalent ligand binding events at surface-exposed cysteines that are nearly or entirely unique to STEP among human PTPs. Together, our results offer new views of the conformational landscape of STEP that may inform structure-based design of allosteric small molecules to specifically inhibit this biomedically important enzyme.
Collapse
Affiliation(s)
- Liliana Guerrero
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
- PhD Program in Biochemistry, CUNY Graduate Center, New York, NY 10016
| | - Ali Ebrahim
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
| | - Blake T. Riley
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
| | - Sean H. Kim
- Department of Chemistry, Amherst College, Amherst, MA 01002
| | | | - Jiaqian Wu
- Sanford Burnham Prebys Medical Discovery Institute, NCI-Designated Cancer Center, 10901 N Torrey Pines Rd, La Jolla, CA 92037
| | - Ye Na Han
- Sanford Burnham Prebys Medical Discovery Institute, NCI-Designated Cancer Center, 10901 N Torrey Pines Rd, La Jolla, CA 92037
| | - Lutz Tautz
- Sanford Burnham Prebys Medical Discovery Institute, NCI-Designated Cancer Center, 10901 N Torrey Pines Rd, La Jolla, CA 92037
| | - Daniel A. Keedy
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031
- PhD Programs in Biochemistry, Biology, & Chemistry, CUNY Graduate Center, New York, NY 10016
| |
Collapse
|
3
|
Ray Chaudhuri N, Ghosh Dastidar S. Adaptive Workflows of Machine Learning Illuminate the Sequential Operation Mechanism of the TAK1's Allosteric Network. Biochemistry 2024; 63:1474-1492. [PMID: 38743619 DOI: 10.1021/acs.biochem.3c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Allostery is a fundamental mechanism driving biomolecular processes that holds significant therapeutic concern. Our study rigorously investigates how two distinct machine-learning algorithms uniquely classify two already close-to-active DFG-in states of TAK1, differing just by the presence or absence of its allosteric activator TAB1, from an ensemble mixture of conformations (obtained from 2.4 μs molecular dynamics (MD) simulations). The novelty, however, lies in understanding the deeper algorithmic potentials to systematically derive a diverse set of differential residue connectivity features that reconstruct the essential mechanistic architecture for TAK1-TAB1 allostery in such a close-to-active biochemical scenario. While the recursive, random forest-based workflow displays the potential of conducting discretized, hierarchical derivation of allosteric features, a multilayer perceptron-based approach gains considerable efficacy in revealing fluid connected patterns of features when hybridized with mutual information scoring. Interestingly, both pipelines benchmark similar directions of functional conformational changes for TAK1's activation. The findings significantly advance the depth of mechanistic understanding by highlighting crucial activation signatures along a directed C-lobe → activation loop → ATP pocket channel of information flow, including (1) the αF-αE biterminal alignments and (2) the "catalytic" drift of the activation loop toward kinase active site. Besides, some novel allosteric hotspots (K253, Y206, N189, etc.) are further recognized as TAB1 sensors, transducers, and responders, including a benchmark E70 mutation site, precisely mapping the important structural segments for sequential allosteric execution. Hence, our work demonstrates how to navigate through greater structural depths and dimensions of dynamic allosteric machineries just by leveraging standard ML methods in suitable streamlined workflows adaptive to the specific system and objectives.
Collapse
Affiliation(s)
- Nibedita Ray Chaudhuri
- Biological Sciences, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata 700091, India
| | - Shubhra Ghosh Dastidar
- Biological Sciences, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata 700091, India
| |
Collapse
|
4
|
Gampp O, Kadavath H, Riek R. NMR tools to detect protein allostery. Curr Opin Struct Biol 2024; 86:102792. [PMID: 38428364 DOI: 10.1016/j.sbi.2024.102792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 03/03/2024]
Abstract
Allostery is a fundamental mechanism of cellular homeostasis by intra-protein communication between distinct functional sites. It is an internal process of proteins to steer interactions not only with each other but also with other biomolecules such as ligands, lipids, and nucleic acids. In addition, allosteric regulation is particularly important in enzymatic activities. A major challenge in structural and molecular biology today is unraveling allosteric sites in proteins, to elucidate the detailed mechanism of allostery and the development of allosteric drugs. Here we summarize the recently developed tools and approaches which enable the elucidation of regulatory hotspots and correlated motion in biomolecules, focusing primarily on solution-state nuclear magnetic resonance spectroscopy (NMR). These tools open an avenue towards a rational understanding of the mechanism of allostery and provide essential information for the design of allosteric drugs.
Collapse
Affiliation(s)
- Olivia Gampp
- Laboratory of Physical Chemistry, ETH Zurich, Switzerland
| | - Harindranath Kadavath
- Laboratory of Physical Chemistry, ETH Zurich, Switzerland; St. Jude Children's Research Hospital, 262 Danny Thomas Place, 38105 Memphis, Tennessee, USA. https://twitter.com/harijik
| | - Roland Riek
- Laboratory of Physical Chemistry, ETH Zurich, Switzerland.
| |
Collapse
|
5
|
Guerrero L, Ebrahim A, Riley BT, Kim M, Huang Q, Finke AD, Keedy DA. Pushed to extremes: distinct effects of high temperature versus pressure on the structure of STEP. Commun Biol 2024; 7:59. [PMID: 38216663 PMCID: PMC10786866 DOI: 10.1038/s42003-023-05609-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/20/2023] [Indexed: 01/14/2024] Open
Abstract
Protein function hinges on small shifts of three-dimensional structure. Elevating temperature or pressure may provide experimentally accessible insights into such shifts, but the effects of these distinct perturbations on protein structures have not been compared in atomic detail. To quantitatively explore these two axes, we report the first pair of structures at physiological temperature versus. high pressure for the same protein, STEP (PTPN5). We show that these perturbations have distinct and surprising effects on protein volume, patterns of ordered solvent, and local backbone and side-chain conformations. This includes interactions between key catalytic loops only at physiological temperature, and a distinct conformational ensemble for another active-site loop only at high pressure. Strikingly, in torsional space, physiological temperature shifts STEP toward previously reported active-like states, while high pressure shifts it toward a previously uncharted region. Altogether, our work indicates that temperature and pressure are complementary, powerful, fundamental macromolecular perturbations.
Collapse
Affiliation(s)
- Liliana Guerrero
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY, 10031, USA
- PhD Program in Biochemistry, CUNY Graduate Center, New York, NY, 10016, USA
| | - Ali Ebrahim
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY, 10031, USA
| | - Blake T Riley
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY, 10031, USA
| | - Minyoung Kim
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY, 10031, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Qingqiu Huang
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY, 14853, USA
| | - Aaron D Finke
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY, 14853, USA
| | - Daniel A Keedy
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY, 10031, USA.
- Department of Chemistry and Biochemistry, City College of New York, New York, NY, 10031, USA.
- PhD Programs in Biochemistry, Biology, & Chemistry, CUNY Graduate Center, New York, NY, 10016, USA.
| |
Collapse
|
6
|
Sharma S, Skaist Mehlman T, Sagabala RS, Boivin B, Keedy DA. High-resolution double vision of the allosteric phosphatase PTP1B. Acta Crystallogr F Struct Biol Commun 2024; 80:1-12. [PMID: 38133579 PMCID: PMC10833341 DOI: 10.1107/s2053230x23010749] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) plays important roles in cellular homeostasis and is a highly validated therapeutic target for multiple human ailments, including diabetes, obesity and breast cancer. However, much remains to be learned about how conformational changes may convey information through the structure of PTP1B to enable allosteric regulation by ligands or functional responses to mutations. High-resolution X-ray crystallography can offer unique windows into protein conformational ensembles, but comparison of even high-resolution structures is often complicated by differences between data sets, including non-isomorphism. Here, the highest resolution crystal structure of apo wild-type (WT) PTP1B to date is presented out of a total of ∼350 PTP1B structures in the PDB. This structure is in a crystal form that is rare for PTP1B, with two unique copies of the protein that exhibit distinct patterns of conformational heterogeneity, allowing a controlled comparison of local disorder across the two chains within the same asymmetric unit. The conformational differences between these chains are interrogated in the apo structure and between several recently reported high-resolution ligand-bound structures. Electron-density maps in a high-resolution structure of a recently reported activating double mutant are also examined, and unmodeled alternate conformations in the mutant structure are discovered that coincide with regions of enhanced conformational heterogeneity in the new WT structure. These results validate the notion that these mutations operate by enhancing local dynamics, and suggest a latent susceptibility to such changes in the WT enzyme. Together, these new data and analysis provide a detailed view of the conformational ensemble of PTP1B and highlight the utility of high-resolution crystallography for elucidating conformational heterogeneity with potential relevance for function.
Collapse
Affiliation(s)
- Shivani Sharma
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA
- PhD Program in Biology, CUNY Graduate Center, New York, NY 10016, USA
| | - Tamar Skaist Mehlman
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA
| | - Reddy Sudheer Sagabala
- Department of Nanobioscience, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
| | - Benoit Boivin
- Department of Nanobioscience, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
| | - Daniel A. Keedy
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA
- PhD Programs in Biochemistry, Biology and Chemistry, CUNY Graduate Center, New York, NY 10016, USA
| |
Collapse
|
7
|
Godbole SS, Dokholyan NV. Allosteric regulation of kinase activity in living cells. eLife 2023; 12:RP90574. [PMID: 37943025 PMCID: PMC10635643 DOI: 10.7554/elife.90574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
The dysregulation of protein kinases is associated with multiple diseases due to the kinases' involvement in a variety of cell signaling pathways. Manipulating protein kinase function, by controlling the active site, is a promising therapeutic and investigative strategy to mitigate and study diseases. Kinase active sites share structural similarities, making it difficult to specifically target one kinase, and allosteric control allows specific regulation and study of kinase function without directly targeting the active site. Allosteric sites are distal to the active site but coupled via a dynamic network of inter-atomic interactions between residues in the protein. Establishing an allosteric control over a kinase requires understanding the allosteric wiring of the protein. Computational techniques offer effective and inexpensive mapping of the allosteric sites on a protein. Here, we discuss the methods to map and regulate allosteric communications in proteins, and strategies to establish control over kinase functions in live cells and organisms. Protein molecules, or 'sensors,' are engineered to function as tools to control allosteric activity of the protein as these sensors have high spatiotemporal resolution and help in understanding cell phenotypes after immediate activation or inactivation of a kinase. Traditional methods used to study protein functions, such as knockout, knockdown, or mutation, cannot offer a sufficiently high spatiotemporal resolution. We discuss the modern repertoire of tools to regulate protein kinases as we enter a new era in deciphering cellular signaling and developing novel approaches to treat diseases associated with signal dysregulation.
Collapse
Affiliation(s)
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of MedicineHersheyUnited States
- Department of Biomedical Engineering, Penn State University, University ParkHersheyUnited States
- Department of Engineering Science and Mechanics, Penn State University, University ParkHersheyUnited States
- Department of Biochemistry & Molecular Biology, Penn State College of MedicineHersheyUnited States
- Department of Chemistry, Penn State University, University ParkHersheyUnited States
| |
Collapse
|
8
|
Godbole S, Dokholyan NV. Allosteric regulation of kinase activity in living cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549709. [PMID: 37503033 PMCID: PMC10370130 DOI: 10.1101/2023.07.19.549709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The dysregulation of protein kinases is associated with multiple diseases due to the kinases' involvement in a variety of cell signaling pathways. Manipulating protein kinase function, by controlling the active site, is a promising therapeutic and investigative strategy to mitigate and study diseases. Kinase active sites share structural similarities making it difficult to specifically target one kinase, allosteric control allows specific regulation and study of kinase function without directly targeting the active site. Allosteric sites are distal to the active site but coupled via a dynamic network of inter-atomic interactions between residues in the protein. Establishing an allosteric control over a kinase requires understanding the allosteric wiring of the protein. Computational techniques offer effective and inexpensive mapping of the allosteric sites on a protein. Here, we discuss methods to map and regulate allosteric communications in proteins, and strategies to establish control over kinase functions in live cells and organisms. Protein molecules, or "sensors" are engineered to function as tools to control allosteric activity of the protein as these sensors have high spatiotemporal resolution and help in understanding cell phenotypes after immediate activation or inactivation of a kinase. Traditional methods used to study protein functions, such as knockout, knockdown, or mutation, cannot offer a sufficiently high spatiotemporal resolution. We discuss the modern repertoire of tools to regulate protein kinases as we enter a new era in deciphering cellular signaling and developing novel approaches to treat diseases associated with signal dysregulation.
Collapse
Affiliation(s)
- Shivani Godbole
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
| | - Nikolay V. Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
- Department of Engineering Science and Mechanics, Penn State University, University Park, PA 16802, USA
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
- Department of Chemistry, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
9
|
Wych DC, Wall ME. Molecular-dynamics simulations of macromolecular diffraction, part II: Analysis of protein crystal simulations. Methods Enzymol 2023; 688:115-143. [PMID: 37748824 DOI: 10.1016/bs.mie.2023.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Molecular-dynamics (MD) simulations have contributed substantially to our understanding of protein structure and dynamics, yielding insights into many biological processes including protein folding, drug binding, and mechanisms of protein-protein interactions. Much of what is known about protein structure comes from macromolecular crystallography (MX) experiments. MD simulations of protein crystals are useful in the study of MX because the simulations can be analyzed to calculate almost any crystallographic observable of interest, from atomic coordinates to structure factors and densities, B-factors, multiple conformations and their populations/occupancies, and diffuse scattering intensities. Computing resources and software to support crystalline MD simulations are now readily available to many researchers studying protein structure and dynamics and who may be interested in advanced interpretation of MX data, including diffuse scattering. In this work, we outline methods of analyzing MD simulations of protein crystals and provide accompanying Jupyter notebooks as practical resources for researchers wishing to perform similar analyses on their own systems of interest.
Collapse
Affiliation(s)
- David C Wych
- Computer, Computational and Statistical Sciences Division, Los Alamos, NM, United States; Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Michael E Wall
- Computer, Computational and Statistical Sciences Division, Los Alamos, NM, United States.
| |
Collapse
|
10
|
Wych DC, Wall ME. Molecular-dynamics simulations of macromolecular diffraction, part I: Preparation of protein crystal simulations. Methods Enzymol 2023; 688:87-114. [PMID: 37748833 DOI: 10.1016/bs.mie.2023.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Molecular-dynamics (MD) simulations of protein crystals enable the prediction of structural and dynamical features of both the protein and the solvent components of macromolecular crystals, which can be validated against diffraction data from X-ray crystallographic experiments. The simulations have been useful for studying and predicting both Bragg and diffuse scattering in protein crystallography; however, the preparation is not yet automated and includes choices and tradeoffs that can impact the results. Here we examine some of the intricacies and consequences of the choices involved in setting up MD simulations of protein crystals for the study of diffraction data, and provide a recipe for preparing the simulations, packaged in an accompanying Jupyter notebook. This article and the accompanying notebook are intended to serve as practical resources for researchers wishing to put these models to work.
Collapse
Affiliation(s)
- David C Wych
- Computer, Computational and Statistical Sciences Division, Los Alamos, NM, United States; Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Michael E Wall
- Computer, Computational and Statistical Sciences Division, Los Alamos, NM, United States.
| |
Collapse
|
11
|
Guerrero L, Ebrahim A, Riley BT, Kim M, Huang Q, Finke AD, Keedy DA. Pushed to extremes: distinct effects of high temperature vs. pressure on the structure of an atypical phosphatase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.538097. [PMID: 37205580 PMCID: PMC10187168 DOI: 10.1101/2023.05.02.538097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Protein function hinges on small shifts of three-dimensional structure. Elevating temperature or pressure may provide experimentally accessible insights into such shifts, but the effects of these distinct perturbations on protein structures have not been compared in atomic detail. To quantitatively explore these two axes, we report the first pair of structures at physiological temperature vs. high pressure for the same protein, STEP (PTPN5). We show that these perturbations have distinct and surprising effects on protein volume, patterns of ordered solvent, and local backbone and side-chain conformations. This includes novel interactions between key catalytic loops only at physiological temperature, and a distinct conformational ensemble for another active-site loop only at high pressure. Strikingly, in torsional space, physiological temperature shifts STEP toward previously reported active-like states, while high pressure shifts it toward a previously uncharted region. Together, our work argues that temperature and pressure are complementary, powerful, fundamental macromolecular perturbations.
Collapse
Affiliation(s)
- Liliana Guerrero
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
- PhD Program in Biochemistry, CUNY Graduate Center, New York, NY 10016
| | - Ali Ebrahim
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
| | - Blake T Riley
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
| | - Minyoung Kim
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Qingqiu Huang
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853
| | - Aaron D Finke
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853
| | - Daniel A Keedy
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031
- PhD Programs in Biochemistry, Biology, & Chemistry, CUNY Graduate Center, New York, NY 10016
| |
Collapse
|
12
|
Stachowski TR, Fischer M. FLEXR: automated multi-conformer model building using electron-density map sampling. Acta Crystallogr D Struct Biol 2023; 79:354-367. [PMID: 37071395 PMCID: PMC10167668 DOI: 10.1107/s2059798323002498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/13/2023] [Indexed: 04/19/2023] Open
Abstract
Protein conformational dynamics that may inform biology often lie dormant in high-resolution electron-density maps. While an estimated ∼18% of side chains in high-resolution models contain alternative conformations, these are underrepresented in current PDB models due to difficulties in manually detecting, building and inspecting alternative conformers. To overcome this challenge, we developed an automated multi-conformer modeling program, FLEXR. Using Ringer-based electron-density sampling, FLEXR builds explicit multi-conformer models for refinement. Thereby, it bridges the gap of detecting hidden alternate states in electron-density maps and including them in structural models for refinement, inspection and deposition. Using a series of high-quality crystal structures (0.8-1.85 Å resolution), we show that the multi-conformer models produced by FLEXR uncover new insights that are missing in models built either manually or using current tools. Specifically, FLEXR models revealed hidden side chains and backbone conformations in ligand-binding sites that may redefine protein-ligand binding mechanisms. Ultimately, the tool facilitates crystallographers with opportunities to include explicit multi-conformer states in their high-resolution crystallographic models. One key advantage is that such models may better reflect interesting higher energy features in electron-density maps that are rarely consulted by the community at large, which can then be productively used for ligand discovery downstream. FLEXR is open source and publicly available on GitHub at https://github.com/TheFischerLab/FLEXR.
Collapse
Affiliation(s)
- Timothy R. Stachowski
- Department of Chemical Biology and Therapeutics, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Marcus Fischer
- Department of Chemical Biology and Therapeutics, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
13
|
de Sá Ribeiro F, Lima LMTR. Linking B-factor and temperature-induced conformational transition. Biophys Chem 2023; 298:107027. [PMID: 37172417 DOI: 10.1016/j.bpc.2023.107027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
The crystallographic B-factor, also called temperature factor or Debye-Waller factor, has long been used as a surrogate for local protein flexibility. However, the use of the absolute B-factor as a probe for protein motion requires reproducible validation against conformational changes against chemical and physical variables. Here we report the investigation of the thermal dependence of the crystallographic B-factor and its correlation with conformational changes of the protein. We obtained the crystal protein structure coordinates and B-factors at high resolution (1.5 Å) over a broad temperature range (100 K to 325 K). The exponential thermal dependence of B-factor as a function of temperature was equal for both the diffraction intensity data (Wilson B-factor) and for all modeled atoms of the system (protein and non-protein atoms), with a thermal diffusion constant of about 0.0045 K-1, similar for all atoms. The extrapolated B-factor at zero Kelvin (or zero-point fluctuation) varies among the atoms, although with no apparent correlation with temperature-dependent protein conformational changes. These data suggest that the thermal vibration of the atom does not necessarily correlate with the conformational dynamics of the protein.
Collapse
Affiliation(s)
- Fernando de Sá Ribeiro
- Laboratório de Biotecnologia Farmacêutica (pbiotech), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Programa de Pós-Graduação em Química Biológica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Luís Maurício T R Lima
- Laboratório de Biotecnologia Farmacêutica (pbiotech), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Instituto Nacional de Metrologia, Tecnologia e Qualidade (INMETRO), Duque de Caxias, RJ 25250-020, Brazil.
| |
Collapse
|
14
|
Skaist Mehlman T, Biel JT, Azeem SM, Nelson ER, Hossain S, Dunnett L, Paterson NG, Douangamath A, Talon R, Axford D, Orins H, von Delft F, Keedy DA. Room-temperature crystallography reveals altered binding of small-molecule fragments to PTP1B. eLife 2023; 12:84632. [PMID: 36881464 PMCID: PMC9991056 DOI: 10.7554/elife.84632] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/12/2023] [Indexed: 03/08/2023] Open
Abstract
Much of our current understanding of how small-molecule ligands interact with proteins stems from X-ray crystal structures determined at cryogenic (cryo) temperature. For proteins alone, room-temperature (RT) crystallography can reveal previously hidden, biologically relevant alternate conformations. However, less is understood about how RT crystallography may impact the conformational landscapes of protein-ligand complexes. Previously, we showed that small-molecule fragments cluster in putative allosteric sites using a cryo crystallographic screen of the therapeutic target PTP1B (Keedy et al., 2018). Here, we have performed two RT crystallographic screens of PTP1B using many of the same fragments, representing the largest RT crystallographic screens of a diverse library of ligands to date, and enabling a direct interrogation of the effect of data collection temperature on protein-ligand interactions. We show that at RT, fewer ligands bind, and often more weakly - but with a variety of temperature-dependent differences, including unique binding poses, changes in solvation, new binding sites, and distinct protein allosteric conformational responses. Overall, this work suggests that the vast body of existing cryo-temperature protein-ligand structures may provide an incomplete picture, and highlights the potential of RT crystallography to help complete this picture by revealing distinct conformational modes of protein-ligand systems. Our results may inspire future use of RT crystallography to interrogate the roles of protein-ligand conformational ensembles in biological function.
Collapse
Affiliation(s)
- Tamar Skaist Mehlman
- Structural Biology Initiative, CUNY Advanced Science Research CenterNew YorkUnited States
- PhD Program in Biochemistry, CUNY Graduate CenterNew YorkUnited States
| | - Justin T Biel
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Syeda Maryam Azeem
- Structural Biology Initiative, CUNY Advanced Science Research CenterNew YorkUnited States
| | | | - Sakib Hossain
- Structural Biology Initiative, CUNY Advanced Science Research CenterNew YorkUnited States
| | - Louise Dunnett
- Diamond Light SourceDidcotUnited Kingdom
- Research Complex at Harwell, Harwell Science and Innovation CampusDidcotUnited Kingdom
| | | | - Alice Douangamath
- Diamond Light SourceDidcotUnited Kingdom
- Research Complex at Harwell, Harwell Science and Innovation CampusDidcotUnited Kingdom
| | | | | | - Helen Orins
- Structural Biology Initiative, CUNY Advanced Science Research CenterNew YorkUnited States
| | - Frank von Delft
- Diamond Light SourceDidcotUnited Kingdom
- Research Complex at Harwell, Harwell Science and Innovation CampusDidcotUnited Kingdom
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Department of Biochemistry, University of JohannesburgJohannesburgSouth Africa
| | - Daniel A Keedy
- Structural Biology Initiative, CUNY Advanced Science Research CenterNew YorkUnited States
- Department of Chemistry and Biochemistry, City College of New YorkNew YorkUnited States
- PhD Programs in Biochemistry, Biology, and Chemistry, CUNY Graduate CenterNew YorkUnited States
| |
Collapse
|
15
|
Doukov T, Herschlag D, Yabukarski F. Obtaining anomalous and ensemble information from protein crystals from 220 K up to physiological temperatures. Acta Crystallogr D Struct Biol 2023; 79:212-223. [PMID: 36876431 PMCID: PMC9986799 DOI: 10.1107/s205979832300089x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/31/2023] [Indexed: 03/01/2023] Open
Abstract
X-ray crystallography has been invaluable in delivering structural information about proteins. Previously, an approach has been developed that allows high-quality X-ray diffraction data to be obtained from protein crystals at and above room temperature. Here, this previous work is built on and extended by showing that high-quality anomalous signal can be obtained from single protein crystals using diffraction data collected at 220 K up to physiological temperatures. The anomalous signal can be used to directly determine the structure of a protein, i.e. to phase the data, as is routinely performed under cryoconditions. This ability is demonstrated by obtaining diffraction data from model lysozyme, thaumatin and proteinase K crystals, the anomalous signal from which allowed their structures to be solved experimentally at 7.1 keV X-ray energy and at room temperature with relatively low data redundancy. It is also demonstrated that the anomalous signal from diffraction data obtained at 310 K (37°C) can be used to solve the structure of proteinase K and to identify ordered ions. The method provides useful anomalous signal at temperatures down to 220 K, resulting in an extended crystal lifetime and increased data redundancy. Finally, we show that useful anomalous signal can be obtained at room temperature using X-rays of 12 keV energy as typically used for routine data collection, allowing this type of experiment to be carried out at widely accessible synchrotron beamline energies and enabling the simultaneous extraction of high-resolution data and anomalous signal. With the recent emphasis on obtaining conformational ensemble information for proteins, the high resolution of the data allows such ensembles to be built, while the anomalous signal allows the structure to be experimentally solved, ions to be identified, and water molecules and ions to be differentiated. Because bound metal-, phosphorus- and sulfur-containing ions all have anomalous signal, obtaining anomalous signal across temperatures and up to physiological temperatures will provide a more complete description of protein conformational ensembles, function and energetics.
Collapse
Affiliation(s)
- Tzanko Doukov
- SMB, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Daniel Herschlag
- Deparment of Biochemistry, Stanford University, Stanford, CA 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Filip Yabukarski
- Deparment of Biochemistry, Stanford University, Stanford, CA 94305, USA
- Bristol-Myers Squibb, San Diego, CA 92121, USA
| |
Collapse
|
16
|
Mehrabi P, Schulz EC. Sample Preparation for Time-Resolved Serial Crystallography: Practical Considerations. Methods Mol Biol 2023; 2652:361-379. [PMID: 37093487 DOI: 10.1007/978-1-0716-3147-8_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Time-resolved serial crystallography is an emerging method to elucidate the structure-function relationship of biomolecular systems at up to atomic resolution. However, to make this demanding method a success, a number of experimental requirements have to be met. In this chapter, we summarize general guidelines and protocols towards performing time-resolved crystallography experiments, with a particular emphasis on sample requirements and preparation but also a brief excursion into reaction initiation.
Collapse
Affiliation(s)
- Pedram Mehrabi
- Institute for Nanostructure and Solid State Physics, Universität Hamburg, Hamburg, Germany.
- Max Planck Institute for Structure and Dynamics of Matter, Hamburg, Germany.
| | - Eike C Schulz
- Max Planck Institute for Structure and Dynamics of Matter, Hamburg, Germany.
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
17
|
Sharma S, Ebrahim A, Keedy DA. Room-temperature serial synchrotron crystallography of the human phosphatase PTP1B. Acta Crystallogr F Struct Biol Commun 2023; 79:23-30. [PMID: 36598353 PMCID: PMC9813971 DOI: 10.1107/s2053230x22011645] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/04/2022] [Indexed: 12/24/2022] Open
Abstract
Room-temperature X-ray crystallography provides unique insights into protein conformational heterogeneity, but obtaining sufficiently large protein crystals is a common hurdle. Serial synchrotron crystallography (SSX) helps to address this hurdle by allowing the use of many medium- to small-sized crystals. Here, a recently introduced serial sample-support chip system has been used to obtain the first SSX structure of a human phosphatase, specifically protein tyrosine phosphatase 1B (PTP1B) in the unliganded (apo) state. In previous apo room-temperature structures, the active site and allosteric sites adopted alternate conformations, including open and closed conformations of the active-site WPD loop and of a distal allosteric site. By contrast, in our SSX structure the active site is best fitted with a single conformation, but the distal allosteric site is best fitted with alternate conformations. This observation argues for additional nuance in interpreting the nature of allosteric coupling in this protein. Overall, our results illustrate the promise of serial methods for room-temperature crystallography, as well as future avant-garde crystallography experiments, for PTP1B and other proteins.
Collapse
Affiliation(s)
- Shivani Sharma
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA
- PhD Program in Biology, CUNY Graduate Center, New York, NY 10016, USA
| | - Ali Ebrahim
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA
| | - Daniel A. Keedy
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA
- PhD Programs in Biochemistry, Biology and Chemistry, CUNY Graduate Center, New York, NY 10016, USA
| |
Collapse
|
18
|
Thorne RE. Determining biomolecular structures near room temperature using X-ray crystallography: concepts, methods and future optimization. Acta Crystallogr D Struct Biol 2023; 79:78-94. [PMID: 36601809 PMCID: PMC9815097 DOI: 10.1107/s2059798322011652] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/04/2022] [Indexed: 01/05/2023] Open
Abstract
For roughly two decades, cryocrystallography has been the overwhelmingly dominant method for determining high-resolution biomolecular structures. Competition from single-particle cryo-electron microscopy and micro-electron diffraction, increased interest in functionally relevant information that may be missing or corrupted in structures determined at cryogenic temperature, and interest in time-resolved studies of the biomolecular response to chemical and optical stimuli have driven renewed interest in data collection at room temperature and, more generally, at temperatures from the protein-solvent glass transition near 200 K to ∼350 K. Fischer has recently reviewed practical methods for room-temperature data collection and analysis [Fischer (2021), Q. Rev. Biophys. 54, e1]. Here, the key advantages and physical principles of, and methods for, crystallographic data collection at noncryogenic temperatures and some factors relevant to interpreting the resulting data are discussed. For room-temperature data collection to realize its potential within the structural biology toolkit, streamlined and standardized methods for delivering crystals prepared in the home laboratory to the synchrotron and for automated handling and data collection, similar to those for cryocrystallography, should be implemented.
Collapse
Affiliation(s)
- Robert E. Thorne
- Physics Department, Cornell University, Ithaca, NY 14853, USA
- MiTeGen LLC, PO Box 3867, Ithaca, NY 14850, USA
| |
Collapse
|
19
|
Stachowski TR, Fischer M. Large-Scale Ligand Perturbations of the Protein Conformational Landscape Reveal State-Specific Interaction Hotspots. J Med Chem 2022; 65:13692-13704. [PMID: 35970514 PMCID: PMC9619398 DOI: 10.1021/acs.jmedchem.2c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Protein flexibility is important for ligand binding but
often ignored
in drug design. Considering proteins as ensembles rather than static
snapshots creates opportunities to target dynamic proteins that lack
FDA-approved drugs, such as the human chaperone, heat shock protein
90 (Hsp90). Hsp90α accommodates ligands with a dynamic lid domain,
yet no comprehensive analysis relating lid conformations to ligand
properties is available. To date, ∼300 ligand-bound Hsp90α
crystal structures are deposited in the Protein Data Bank, which enables
us to consider ligand binding as a perturbation of the protein conformational
landscape. By estimating binding site volumes, we classified structures
into distinct major and minor lid conformations. Supported by retrospective
docking, each conformation creates unique hotspots that bind chemically
distinguishable ligands. Clustering revealed insightful exceptions
and the impact of crystal packing. Overall, Hsp90α’s
plasticity provides a cautionary tale of overinterpreting individual
crystal structures and motivates an ensemble-based view of drug design.
Collapse
Affiliation(s)
- Timothy R Stachowski
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Marcus Fischer
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States.,Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| |
Collapse
|
20
|
Yabukarski F, Doukov T, Mokhtari DA, Du S, Herschlag D. Evaluating the impact of X-ray damage on conformational heterogeneity in room-temperature (277 K) and cryo-cooled protein crystals. Acta Crystallogr D Struct Biol 2022; 78:945-963. [PMID: 35916220 PMCID: PMC9344472 DOI: 10.1107/s2059798322005939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/02/2022] [Indexed: 11/10/2022] Open
Abstract
Cryo-cooling has been nearly universally adopted to mitigate X-ray damage and facilitate crystal handling in protein X-ray crystallography. However, cryo X-ray crystallographic data provide an incomplete window into the ensemble of conformations that is at the heart of protein function and energetics. Room-temperature (RT) X-ray crystallography provides accurate ensemble information, and recent developments allow conformational heterogeneity (the experimental manifestation of ensembles) to be extracted from single-crystal data. Nevertheless, high sensitivity to X-ray damage at RT raises concerns about data reliability. To systematically address this critical issue, increasingly X-ray-damaged high-resolution data sets (1.02-1.52 Å resolution) were obtained from single proteinase K, thaumatin and lysozyme crystals at RT (277 K). In each case a modest increase in conformational heterogeneity with X-ray damage was observed. Merging data with different extents of damage (as is typically carried out) had negligible effects on conformational heterogeneity until the overall diffraction intensity decayed to ∼70% of its initial value. These effects were compared with X-ray damage effects in cryo-cooled crystals by carrying out an analogous analysis of increasingly damaged proteinase K cryo data sets (0.9-1.16 Å resolution). X-ray damage-associated heterogeneity changes were found that were not observed at RT. This property renders it difficult to distinguish real from artefactual conformations and to determine the conformational response to changes in temperature. The ability to acquire reliable heterogeneity information from single crystals at RT, together with recent advances in RT data collection at accessible synchrotron beamlines, provides a strong motivation for the widespread adoption of RT X-ray crystallography to obtain conformational ensemble information.
Collapse
Affiliation(s)
- Filip Yabukarski
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Tzanko Doukov
- SMB, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Daniel A. Mokhtari
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Siyuan Du
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
21
|
Papageorgiou AC. Structural Characterization of Multienzyme Assemblies: An Overview. Methods Mol Biol 2022; 2487:51-72. [PMID: 35687229 DOI: 10.1007/978-1-0716-2269-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multienzyme assemblies have attracted significant attention in recent years for use in industrial applications instead of single enzymes. Owing to their ability to catalyze cascade reactions, multienzyme assemblies have become inspirational tools for the in vitro construction of multienzyme molecular machines. The use of such molecular machines could offer several advantages such as fewer side reactions, a high product yield, a fast reaction speed, easy product separation, a tolerable toxic environment, and robust system operability compared to current microbial cell catalytic systems. Besides, they can provide all the benefits found in the use of enzymes, including reusability, catalytic efficiency, and specificity. Similar to single enzymes, multienzyme assemblies could offer economical and environmentally friendly alternatives to conventional catalysts and play a central role as biocatalysts in green chemistry applications. However, detailed characterization of multienzyme assemblies and a full understanding of their mechanistic details are required for their efficient use in industrial biotransformations. Since the determination of the first enzyme structure in 1965, structural information has played a pivotal role in the characterization of enzymes and elucidation of their structure-function relationship. Among the structural biology techniques, X-ray crystallography has provided key mechanistic details into multienzyme assemblies. Here, the structural characterization of multienzyme assemblies is reviewed and several examples are provided.
Collapse
|
22
|
Bradford SYC, El Khoury L, Ge Y, Osato M, Mobley DL, Fischer M. Temperature artifacts in protein structures bias ligand-binding predictions. Chem Sci 2021; 12:11275-11293. [PMID: 34667539 PMCID: PMC8447925 DOI: 10.1039/d1sc02751d] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
X-ray crystallography is the gold standard to resolve conformational ensembles that are significant for protein function, ligand discovery, and computational methods development. However, relevant conformational states may be missed at common cryogenic (cryo) data-collection temperatures but can be populated at room temperature. To assess the impact of temperature on making structural and computational discoveries, we systematically investigated protein conformational changes in response to temperature and ligand binding in a structural and computational workhorse, the T4 lysozyme L99A cavity. Despite decades of work on this protein, shifting to RT reveals new global and local structural changes. These include uncovering an apo helix conformation that is hidden at cryo but relevant for ligand binding, and altered side chain and ligand conformations. To evaluate the impact of temperature-induced protein and ligand changes on the utility of structural information in computation, we evaluated how temperature can mislead computational methods that employ cryo structures for validation. We find that when comparing simulated structures just to experimental cryo structures, hidden successes and failures often go unnoticed. When using structural information in ligand binding predictions, both coarse docking and rigorous binding free energy calculations are influenced by temperature effects. The trend that cryo artifacts limit the utility of structures for computation holds across five distinct protein classes. Our results suggest caution when consulting cryogenic structural data alone, as temperature artifacts can conceal errors and prevent successful computational predictions, which can mislead the development and application of computational methods in discovering bioactive molecules.
Collapse
Affiliation(s)
- Shanshan Y C Bradford
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital Memphis TN 38105 USA
| | - Léa El Khoury
- Department of Pharmaceutical Sciences, University of California Irvine CA 92697 USA
| | - Yunhui Ge
- Department of Pharmaceutical Sciences, University of California Irvine CA 92697 USA
| | - Meghan Osato
- Department of Pharmaceutical Sciences, University of California Irvine CA 92697 USA
| | - David L Mobley
- Department of Pharmaceutical Sciences, University of California Irvine CA 92697 USA
- Department of Chemistry, University of California Irvine CA 92697 USA
| | - Marcus Fischer
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital Memphis TN 38105 USA
- Department of Structural Biology, St. Jude Children's Research Hospital Memphis TN 38105 USA
| |
Collapse
|
23
|
Civera M, Moroni E, Sorrentino L, Vasile F, Sattin S. Chemical and Biophysical Approaches to Allosteric Modulation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Monica Civera
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Elisabetta Moroni
- Istituto di Scienze e Tecnologie Chimiche Giulio Natta, SCITEC Via Mario Bianco 9 20131 Milan Italy
| | - Luca Sorrentino
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Francesca Vasile
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Sara Sattin
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| |
Collapse
|
24
|
Abstract
X-ray crystallography enables detailed structural studies of proteins to understand and modulate their function. Conducting crystallographic experiments at cryogenic temperatures has practical benefits but potentially limits the identification of functionally important alternative protein conformations that can be revealed only at room temperature (RT). This review discusses practical aspects of preparing, acquiring, and analyzing X-ray crystallography data at RT to demystify preconceived impracticalities that freeze progress of routine RT data collection at synchrotron sources. Examples are presented as conceptual and experimental templates to enable the design of RT-inspired studies; they illustrate the diversity and utility of gaining novel insights into protein conformational landscapes. An integrative view of protein conformational dynamics enables opportunities to advance basic and biomedical research.
Collapse
|
25
|
Lim JPL, Braza MKE, Nellas RB. The effect of ligand affinity to the contact dynamics of the ligand binding domain of thyroid hormone receptor - retinoid X receptor. J Mol Graph Model 2021; 104:107829. [PMID: 33450664 DOI: 10.1016/j.jmgm.2020.107829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 11/19/2022]
Abstract
Ligand-based allostery has been gaining attention for its importance in protein regulation and implication in drug design. One of the interesting cases of protein allostery is the thyroid hormone receptor - retinoid x receptor (TR:RXR), which regulates the gene expression of important physiological processes, such as development and metabolism. It is regulated by the TR native ligand triiodothyronine (T3), which displays anticooperative behavior to the RXR ligand 9-cis retinoic acid (9C). In contrast to this anticooperative behavior, 9C has been shown to increase the activity of TR:RXR. Here we probed the influence of the affinity and the interactions of the TR ligand to the allostery of the TR:RXR through contact dynamics and residue networks. The TR ligand analogs were designed to have higher (G2) and lower (N1) binding energies than T3 when docked to the TR:RXR(9C) complex. The aqueous TR(N1/T3/G2):RXR(9C) complexes were subjected to 30 ns all-atom simulations using theNAMD. The program CAMERRA was used to capture the subtle perturbations of TR:RXR by mapping the residue contact dynamics. Various parts of the TR ligands; including the hydrophilic head, the iodine substituents, and the ligand tail; have been probed for their significance in ligand affinity. The results on the T3 and G2 complexes suggest that ligand affinity can be utilized as a predictor for anticooperative systems on which ligand is more likely to dissociate or remain bound. All 3 complexes also display distinct contact networks for cross-dimer signalling and ligand communication. Understanding ligand-based allostery could potentially unveil secrets of ligand-regulated protein dynamics, a foundation for the design of better and more efficient allosteric drugs.
Collapse
Affiliation(s)
- James Peter L Lim
- Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Mac Kevin E Braza
- Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Ricky B Nellas
- Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, Philippines.
| |
Collapse
|
26
|
Helliwell JR. What is the structural chemistry of the living organism at its temperature and pressure? Acta Crystallogr D Struct Biol 2020; 76:87-93. [PMID: 32038039 PMCID: PMC7008516 DOI: 10.1107/s2059798320000546] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/15/2020] [Indexed: 12/02/2022] Open
Abstract
The three probes of the structure of matter (X-rays, neutrons and electrons) in biology have complementary properties and strengths. The balance between these three probes within their strengths and weaknesses is perceived to change, even dramatically so at times. For the study of combined states of order and disorder, NMR crystallography is also applicable. Of course, to understand biological systems the required perspectives are surely physiologically relevant temperatures and relevant chemical conditions, as well as a minimal perturbation owing to the needs of the probe itself. These remain very tough challenges because, for example, cryoEM by its very nature will never be performed at room temperature, crystallization often requires nonphysiological chemical conditions, and X-rays and electrons cause beam damage. However, integrated structural biology techniques and functional assays provide a package towards physiological relevance of any given study. Reporting of protein crystal structures, and their associated database entries, could usefully indicate how close to the biological situation they are, as discussed in detail in this feature article.
Collapse
Affiliation(s)
- John R. Helliwell
- Department of Chemistry, University of Manchester, Manchester M13 9PL, England
| |
Collapse
|
27
|
Förster A, Schulze-Briese C. A shared vision for macromolecular crystallography over the next five years. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2019; 6:064302. [PMID: 31832486 PMCID: PMC6892709 DOI: 10.1063/1.5131017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/19/2019] [Indexed: 05/12/2023]
Abstract
Macromolecular crystallography (MX) is the dominant means of determining the three-dimensional structures of biological macromolecules, but the method has reached a critical juncture. New diffraction-limited storage rings and upgrades to the existing sources will provide beamlines with higher flux and brilliance, and even the largest detectors can collect at rates of several hundred hertz. Electron cryomicroscopy is successfully competing for structural biologists' most exciting projects. As a result, formerly scarce beam time is becoming increasingly abundant, and beamlines must innovate to attract users and ensure continued funding. Here, we will show how data collection has changed over the preceding five years and how alternative methods have emerged. We then explore how MX at synchrotrons might develop over the next five years. We predict that, despite the continued dominance of rotation crystallography, applications previously considered niche or experimental, such as serial crystallography, pink-beam crystallography, and crystallography at energies above 25 keV and below 5 keV, will rise in prominence as beamlines specialize to offer users the best value. Most of these emerging methods will require new hardware and software. With these advances, MX will more efficiently provide the high-resolution structures needed for drug development. MX will also be able to address a broader range of questions than before and contribute to a deeper understanding of biological processes in the context of integrative structural biology.
Collapse
|
28
|
van den Bedem H, Wilson MA. Shining light on cysteine modification: connecting protein conformational dynamics to catalysis and regulation. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:958-966. [PMID: 31274417 PMCID: PMC6613112 DOI: 10.1107/s160057751900568x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/25/2019] [Indexed: 05/04/2023]
Abstract
Cysteine is a rare but functionally important amino acid that is often subject to covalent modification. Cysteine oxidation plays an important role in many human disease processes, and basal levels of cysteine oxidation are required for proper cellular function. Because reactive cysteine residues are typically ionized to the thiolate anion (Cys-S-), their formation of a covalent bond alters the electrostatic and steric environment of the active site. X-ray-induced photo-oxidation to sulfenic acids (Cys-SOH) can recapitulate some aspects of the changes that occur under physiological conditions. Here we propose how site-specific cysteine photo-oxidation can be used to interrogate ensuing changes in protein structure and dynamics at atomic resolution. Although this powerful approach can connect cysteine covalent modification to global protein conformational changes and function, careful biochemical validation must accompany all such studies to exclude misleading artifacts. New types of X-ray crystallography experiments and powerful computational methods are creating new opportunities to connect conformational dynamics to catalysis for the large class of systems that use covalently modified cysteine residues for catalysis or regulation.
Collapse
Affiliation(s)
- Henry van den Bedem
- Bioscience Division, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Mark A Wilson
- Department of Biochemistry and the Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|