1
|
Akaberi D, Pourghasemi Lati M, Krambrich J, Berger J, Neilsen G, Strandback E, Turunen SP, Wannberg J, Gullberg H, Moche M, Chinthakindi PK, Nyman T, Sarafianos SG, Sandström A, Järhult JD, Sandberg K, Lundkvist Å, Verho O, Lennerstrand J. Identification of novel and potent inhibitors of SARS-CoV-2 main protease from DNA-encoded chemical libraries. Antimicrob Agents Chemother 2024; 68:e0090924. [PMID: 39194208 PMCID: PMC11459923 DOI: 10.1128/aac.00909-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
In vitro screening of large compound libraries with automated high-throughput screening is expensive and time-consuming and requires dedicated infrastructures. Conversely, the selection of DNA-encoded chemical libraries (DECLs) can be rapidly performed with routine equipment available in most laboratories. In this study, we identified novel inhibitors of SARS-CoV-2 main protease (Mpro) through the affinity-based selection of the DELopen library (open access for academics), containing 4.2 billion compounds. The identified inhibitors were peptide-like compounds containing an N-terminal electrophilic group able to form a covalent bond with the nucleophilic Cys145 of Mpro, as confirmed by x-ray crystallography. This DECL selection campaign enabled the discovery of the unoptimized compound SLL11 (IC50 = 30 nM), proving that the rapid exploration of large chemical spaces enabled by DECL technology allows for the direct identification of potent inhibitors avoiding several rounds of iterative medicinal chemistry. As demonstrated further by x-ray crystallography, SLL11 was found to adopt a highly unique U-shaped binding conformation, which allows the N-terminal electrophilic group to loop back to the S1' subsite while the C-terminal amino acid sits in the S1 subsite. MP1, a close analog of SLL11, showed antiviral activity against SARS-CoV-2 in the low micromolar range when tested in Caco-2 and Calu-3 (EC50 = 2.3 µM) cell lines. As peptide-like compounds can suffer from low cell permeability and metabolic stability, the cyclization of the compounds will be explored in the future to improve their antiviral activity.
Collapse
Affiliation(s)
- Dario Akaberi
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | | | - Janina Krambrich
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Julia Berger
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden
| | - Grace Neilsen
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Emilia Strandback
- Department of Medical Biochemistry and Biophysics, Protein Science Facility, Karolinska Institutet, Stockholm, Sweden
| | - S. Pauliina Turunen
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
- Drug Discovery and Development, Science for Life Laboratory, Solna, Sweden
| | - Johan Wannberg
- Department of Medicinal Chemistry, Science for Life Laboratory, BMC, Uppsala University, Uppsala, Sweden
| | - Hjalmar Gullberg
- Science for Life Laboratory, Biochemical and Cellular Assay Facility, Drug Discovery and Development Platform, Department of Biochemistry and Biophysics, Stockholm University, Solna, Stockholm, Sweden
| | - Martin Moche
- Department of Medical Biochemistry and Biophysics, Protein Science Facility, Karolinska Institutet, Stockholm, Sweden
| | - Praveen Kumar Chinthakindi
- The Beijer Laboratory, Department of Medicinal Chemistry, Drug Design and Discovery, Uppsala University, Uppsala, Sweden
| | - Tomas Nyman
- Department of Medical Biochemistry and Biophysics, Protein Science Facility, Karolinska Institutet, Stockholm, Sweden
| | - Stefan G. Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Anja Sandström
- The Beijer Laboratory, Department of Medicinal Chemistry, Drug Design and Discovery, Uppsala University, Uppsala, Sweden
| | - Josef D. Järhult
- Department of Medical Sciences, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Kristian Sandberg
- Science for Life Laboratory, Drug Discovery & Development Platform, Uppsala University, Uppsala, Sweden
| | - Åke Lundkvist
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Oscar Verho
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Johan Lennerstrand
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Lawson CL, Kryshtafovych A, Pintilie GD, Burley SK, Černý J, Chen VB, Emsley P, Gobbi A, Joachimiak A, Noreng S, Prisant MG, Read RJ, Richardson JS, Rohou AL, Schneider B, Sellers BD, Shao C, Sourial E, Williams CI, Williams CJ, Yang Y, Abbaraju V, Afonine PV, Baker ML, Bond PS, Blundell TL, Burnley T, Campbell A, Cao R, Cheng J, Chojnowski G, Cowtan KD, DiMaio F, Esmaeeli R, Giri N, Grubmüller H, Hoh SW, Hou J, Hryc CF, Hunte C, Igaev M, Joseph AP, Kao WC, Kihara D, Kumar D, Lang L, Lin S, Maddhuri Venkata Subramaniya SR, Mittal S, Mondal A, Moriarty NW, Muenks A, Murshudov GN, Nicholls RA, Olek M, Palmer CM, Perez A, Pohjolainen E, Pothula KR, Rowley CN, Sarkar D, Schäfer LU, Schlicksup CJ, Schröder GF, Shekhar M, Si D, Singharoy A, Sobolev OV, Terashi G, Vaiana AC, Vedithi SC, Verburgt J, Wang X, Warshamanage R, Winn MD, Weyand S, Yamashita K, Zhao M, Schmid MF, Berman HM, Chiu W. Outcomes of the EMDataResource cryo-EM Ligand Modeling Challenge. Nat Methods 2024; 21:1340-1348. [PMID: 38918604 PMCID: PMC11526832 DOI: 10.1038/s41592-024-02321-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024]
Abstract
The EMDataResource Ligand Model Challenge aimed to assess the reliability and reproducibility of modeling ligands bound to protein and protein-nucleic acid complexes in cryogenic electron microscopy (cryo-EM) maps determined at near-atomic (1.9-2.5 Å) resolution. Three published maps were selected as targets: Escherichia coli beta-galactosidase with inhibitor, SARS-CoV-2 virus RNA-dependent RNA polymerase with covalently bound nucleotide analog and SARS-CoV-2 virus ion channel ORF3a with bound lipid. Sixty-one models were submitted from 17 independent research groups, each with supporting workflow details. The quality of submitted ligand models and surrounding atoms were analyzed by visual inspection and quantification of local map quality, model-to-map fit, geometry, energetics and contact scores. A composite rather than a single score was needed to assess macromolecule+ligand model quality. These observations lead us to recommend best practices for assessing cryo-EM structures of liganded macromolecules reported at near-atomic resolution.
Collapse
Affiliation(s)
- Catherine L Lawson
- RCSB Protein Data Bank and Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| | | | - Grigore D Pintilie
- Departments of Bioengineering and of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Stephen K Burley
- RCSB Protein Data Bank and Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- RCSB Protein Data Bank and San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, USA
| | - Jiří Černý
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czech Republic
| | - Vincent B Chen
- Department of Biochemistry, Duke University, Durham, NC, USA
| | - Paul Emsley
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Alberto Gobbi
- Discovery Chemistry, Genentech Inc., San Francisco, CA, USA
- , Berlin, Germany
| | - Andrzej Joachimiak
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Sigrid Noreng
- Structural Biology, Genentech Inc., South San Francisco, CA, USA
- Protein Science, Septerna, South San Francisco, CA, USA
| | | | - Randy J Read
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | - Alexis L Rohou
- Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Bohdan Schneider
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czech Republic
| | - Benjamin D Sellers
- Discovery Chemistry, Genentech Inc., San Francisco, CA, USA
- Computational Chemistry, Vilya, South San Francisco, CA, USA
| | - Chenghua Shao
- RCSB Protein Data Bank and Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | | | | | | | - Ying Yang
- Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Venkat Abbaraju
- RCSB Protein Data Bank and Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Pavel V Afonine
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Matthew L Baker
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Paul S Bond
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Tom Burnley
- Scientific Computing Department, UKRI Science and Technology Facilities Council, Research Complex at Harwell, Didcot, UK
| | - Arthur Campbell
- Center for Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Renzhi Cao
- Department of Computer Science, Pacific Lutheran University, Tacoma, WA, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | | | - K D Cowtan
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Frank DiMaio
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Reza Esmaeeli
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL, USA
| | - Nabin Giri
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Helmut Grubmüller
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Soon Wen Hoh
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Jie Hou
- Department of Computer Science, Saint Louis University, St. Louis, MO, USA
| | - Corey F Hryc
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Carola Hunte
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Maxim Igaev
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Agnel P Joseph
- Scientific Computing Department, UKRI Science and Technology Facilities Council, Research Complex at Harwell, Didcot, UK
| | - Wei-Chun Kao
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Dilip Kumar
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Trivedi School of Biosciences, Ashoka University, Sonipat, India
| | - Lijun Lang
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL, USA
- The Chinese University of Hong Kong, Hong Kong, China
| | - Sean Lin
- Division of Computing & Software Systems, University of Washington, Bothell, WA, USA
| | | | - Sumit Mittal
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Advanced Sciences and Languages, VIT Bhopal University, Bhopal, India
| | - Arup Mondal
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL, USA
- National Renewable Energy Laboratory (NREL), Golden, CO, USA
| | - Nigel W Moriarty
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Andrew Muenks
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - Robert A Nicholls
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Scientific Computing Department, UKRI Science and Technology Facilities Council, Research Complex at Harwell, Didcot, UK
| | - Mateusz Olek
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Colin M Palmer
- Scientific Computing Department, UKRI Science and Technology Facilities Council, Research Complex at Harwell, Didcot, UK
| | - Alberto Perez
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL, USA
| | - Emmi Pohjolainen
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Karunakar R Pothula
- Institute of Biological Information Processing (IBI-7, Structural Biochemistry) and Jülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany
| | | | - Daipayan Sarkar
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
- MSU-DOE Plant Research Laboratory, East Lansing, MI, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Luisa U Schäfer
- Institute of Biological Information Processing (IBI-7, Structural Biochemistry) and Jülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany
| | - Christopher J Schlicksup
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Gunnar F Schröder
- Institute of Biological Information Processing (IBI-7, Structural Biochemistry) and Jülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany
- Physics Department, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Mrinal Shekhar
- Center for Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Dong Si
- Division of Computing & Software Systems, University of Washington, Bothell, WA, USA
| | | | - Oleg V Sobolev
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Genki Terashi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Andrea C Vaiana
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Nature's Toolbox (NTx), Rio Rancho, NM, USA
| | | | - Jacob Verburgt
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Xiao Wang
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | | | - Martyn D Winn
- Scientific Computing Department, UKRI Science and Technology Facilities Council, Research Complex at Harwell, Didcot, UK
| | - Simone Weyand
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Minglei Zhao
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Michael F Schmid
- Division of Cryo-EM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Helen M Berman
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Wah Chiu
- Departments of Bioengineering and of Microbiology and Immunology, Stanford University, Stanford, CA, USA.
- Division of Cryo-EM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| |
Collapse
|
3
|
Bazayeva M, Andreini C, Rosato A. A database overview of metal-coordination distances in metalloproteins. Acta Crystallogr D Struct Biol 2024; 80:362-376. [PMID: 38682667 PMCID: PMC11066882 DOI: 10.1107/s2059798324003152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
Metalloproteins are ubiquitous in all living organisms and take part in a very wide range of biological processes. For this reason, their experimental characterization is crucial to obtain improved knowledge of their structure and biological functions. The three-dimensional structure represents highly relevant information since it provides insight into the interaction between the metal ion(s) and the protein fold. Such interactions determine the chemical reactivity of the bound metal. The available PDB structures can contain errors due to experimental factors such as poor resolution and radiation damage. A lack of use of distance restraints during the refinement and validation process also impacts the structure quality. Here, the aim was to obtain a thorough overview of the distribution of the distances between metal ions and their donor atoms through the statistical analysis of a data set based on more than 115 000 metal-binding sites in proteins. This analysis not only produced reference data that can be used by experimentalists to support the structure-determination process, for example as refinement restraints, but also resulted in an improved insight into how protein coordination occurs for different metals and the nature of their binding interactions. In particular, the features of carboxylate coordination were inspected, which is the only type of interaction that is commonly present for nearly all metals.
Collapse
Affiliation(s)
- Milana Bazayeva
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Claudia Andreini
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Antonio Rosato
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
4
|
Lawson CL, Kryshtafovych A, Pintilie GD, Burley SK, Černý J, Chen VB, Emsley P, Gobbi A, Joachimiak A, Noreng S, Prisant M, Read RJ, Richardson JS, Rohou AL, Schneider B, Sellers BD, Shao C, Sourial E, Williams CI, Williams CJ, Yang Y, Abbaraju V, Afonine PV, Baker ML, Bond PS, Blundell TL, Burnley T, Campbell A, Cao R, Cheng J, Chojnowski G, Cowtan KD, DiMaio F, Esmaeeli R, Giri N, Grubmüller H, Hoh SW, Hou J, Hryc CF, Hunte C, Igaev M, Joseph AP, Kao WC, Kihara D, Kumar D, Lang L, Lin S, Maddhuri Venkata Subramaniya SR, Mittal S, Mondal A, Moriarty NW, Muenks A, Murshudov GN, Nicholls RA, Olek M, Palmer CM, Perez A, Pohjolainen E, Pothula KR, Rowley CN, Sarkar D, Schäfer LU, Schlicksup CJ, Schröder GF, Shekhar M, Si D, Singharoy A, Sobolev OV, Terashi G, Vaiana AC, Vedithi SC, Verburgt J, Wang X, Warshamanage R, Winn MD, Weyand S, Yamashita K, Zhao M, Schmid MF, Berman HM, Chiu W. Outcomes of the EMDataResource Cryo-EM Ligand Modeling Challenge. RESEARCH SQUARE 2024:rs.3.rs-3864137. [PMID: 38343795 PMCID: PMC10854310 DOI: 10.21203/rs.3.rs-3864137/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The EMDataResource Ligand Model Challenge aimed to assess the reliability and reproducibility of modeling ligands bound to protein and protein/nucleic-acid complexes in cryogenic electron microscopy (cryo-EM) maps determined at near-atomic (1.9-2.5 Å) resolution. Three published maps were selected as targets: E. coli beta-galactosidase with inhibitor, SARS-CoV-2 RNA-dependent RNA polymerase with covalently bound nucleotide analog, and SARS-CoV-2 ion channel ORF3a with bound lipid. Sixty-one models were submitted from 17 independent research groups, each with supporting workflow details. We found that (1) the quality of submitted ligand models and surrounding atoms varied, as judged by visual inspection and quantification of local map quality, model-to-map fit, geometry, energetics, and contact scores, and (2) a composite rather than a single score was needed to assess macromolecule+ligand model quality. These observations lead us to recommend best practices for assessing cryo-EM structures of liganded macromolecules reported at near-atomic resolution.
Collapse
Affiliation(s)
- Catherine L. Lawson
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | | | - Grigore D. Pintilie
- Departments of Bioengineering and of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Stephen K. Burley
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ USA
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA USA
| | - Jiří Černý
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, CZ
| | | | - Paul Emsley
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Alberto Gobbi
- Discovery Chemistry, Genentech Inc, South San Francisco, USA
| | - Andrzej Joachimiak
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA
| | - Sigrid Noreng
- Structural Biology, Genentech Inc, South San Francisco, USA
| | | | - Randy J. Read
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | | | - Bohdan Schneider
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, CZ
| | | | - Chenghua Shao
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | | | | | | | - Ying Yang
- Structural Biology, Genentech Inc, South San Francisco, USA
| | - Venkat Abbaraju
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Pavel V. Afonine
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Matthew L. Baker
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Paul S. Bond
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Tom Burnley
- Scientific Computing Department, UKRI Science and Technology Facilities Council, Research Complex at Harwell, Didcot, UK
| | - Arthur Campbell
- Center for Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Renzhi Cao
- Department of Computer Science, Pacific Lutheran University, Tacoma, WA, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | | | - Kevin D. Cowtan
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Frank DiMaio
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Reza Esmaeeli
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL, USA
| | - Nabin Giri
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Helmut Grubmüller
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Soon Wen Hoh
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Jie Hou
- Department of Computer Science, Saint Louis University, St. Louis, MO, USA
| | - Corey F. Hryc
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Carola Hunte
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine and CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Maxim Igaev
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Agnel P. Joseph
- Scientific Computing Department, UKRI Science and Technology Facilities Council, Research Complex at Harwell, Didcot, UK
| | - Wei-Chun Kao
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine and CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Dilip Kumar
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Lijun Lang
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL, USA
| | - Sean Lin
- Division of Computing & Software Systems, University of Washington, Bothell, WA, USA
| | | | - Sumit Mittal
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Advanced Sciences and Languages, VIT Bhopal University, Bhopal, India
| | - Arup Mondal
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL, USA
| | - Nigel W. Moriarty
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Andrew Muenks
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | | | - Mateusz Olek
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Colin M. Palmer
- Scientific Computing Department, UKRI Science and Technology Facilities Council, Research Complex at Harwell, Didcot, UK
| | - Alberto Perez
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL, USA
| | - Emmi Pohjolainen
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Karunakar R. Pothula
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and Jülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany
| | | | - Daipayan Sarkar
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Luisa U. Schäfer
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and Jülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany
| | - Christopher J. Schlicksup
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Gunnar F. Schröder
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and Jülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany
- Physics Department, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Mrinal Shekhar
- Center for Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Dong Si
- Division of Computing & Software Systems, University of Washington, Bothell, WA, USA
| | | | - Oleg V. Sobolev
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Genki Terashi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Andrea C. Vaiana
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Nature’s Toolbox (NTx), Rio Rancho, NM, USA
| | | | - Jacob Verburgt
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Xiao Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | | | - Martyn D. Winn
- Scientific Computing Department, UKRI Science and Technology Facilities Council, Research Complex at Harwell, Didcot, UK
| | - Simone Weyand
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Minglei Zhao
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Michael F. Schmid
- Division of Cryo-EM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Helen M. Berman
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Wah Chiu
- Departments of Bioengineering and of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Division of Cryo-EM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| |
Collapse
|
5
|
Catapano L, Long F, Yamashita K, Nicholls RA, Steiner RA, Murshudov GN. Neutron crystallographic refinement with REFMAC5 from the CCP4 suite. Acta Crystallogr D Struct Biol 2023; 79:1056-1070. [PMID: 37921806 PMCID: PMC7615533 DOI: 10.1107/s2059798323008793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023] Open
Abstract
Hydrogen (H) atoms are abundant in macromolecules and often play critical roles in enzyme catalysis, ligand-recognition processes and protein-protein interactions. However, their direct visualization by diffraction techniques is challenging. Macromolecular X-ray crystallography affords the localization of only the most ordered H atoms at (sub-)atomic resolution (around 1.2 Å or higher). However, many H atoms of biochemical significance remain undetectable by this method. In contrast, neutron diffraction methods enable the visualization of most H atoms, typically in the form of deuterium (2H) atoms, at much more common resolution values (better than 2.5 Å). Thus, neutron crystallography, although technically demanding, is often the method of choice when direct information on protonation states is sought. REFMAC5 from the Collaborative Computational Project No. 4 (CCP4) is a program for the refinement of macromolecular models against X-ray crystallographic and cryo-EM data. This contribution describes its extension to include the refinement of structural models obtained from neutron crystallographic data. Stereochemical restraints with accurate bond distances between H atoms and their parent atom nuclei are now part of the CCP4 Monomer Library, the source of prior chemical information used in the refinement. One new feature for neutron data analysis in REFMAC5 is refinement of the protium/deuterium (1H/2H) fraction. This parameter describes the relative 1H/2H contribution to neutron scattering for hydrogen isotopes. The newly developed REFMAC5 algorithms were tested by performing the (re-)refinement of several entries available in the PDB and of one novel structure (FutA) using either (i) neutron data only or (ii) neutron data supplemented by external restraints to a reference X-ray crystallographic structure. Re-refinement with REFMAC5 afforded models characterized by R-factor values that are consistent with, and in some cases better than, the originally deposited values. The use of external reference structure restraints during refinement has been observed to be a valuable strategy, especially for structures at medium-low resolution.
Collapse
Affiliation(s)
- Lucrezia Catapano
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, United Kingdom
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Fei Long
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Keitaro Yamashita
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Robert A. Nicholls
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Roberto A. Steiner
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, United Kingdom
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Garib N. Murshudov
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
6
|
Agirre J, Atanasova M, Bagdonas H, Ballard CB, Baslé A, Beilsten-Edmands J, Borges RJ, Brown DG, Burgos-Mármol JJ, Berrisford JM, Bond PS, Caballero I, Catapano L, Chojnowski G, Cook AG, Cowtan KD, Croll TI, Debreczeni JÉ, Devenish NE, Dodson EJ, Drevon TR, Emsley P, Evans G, Evans PR, Fando M, Foadi J, Fuentes-Montero L, Garman EF, Gerstel M, Gildea RJ, Hatti K, Hekkelman ML, Heuser P, Hoh SW, Hough MA, Jenkins HT, Jiménez E, Joosten RP, Keegan RM, Keep N, Krissinel EB, Kolenko P, Kovalevskiy O, Lamzin VS, Lawson DM, Lebedev AA, Leslie AGW, Lohkamp B, Long F, Malý M, McCoy AJ, McNicholas SJ, Medina A, Millán C, Murray JW, Murshudov GN, Nicholls RA, Noble MEM, Oeffner R, Pannu NS, Parkhurst JM, Pearce N, Pereira J, Perrakis A, Powell HR, Read RJ, Rigden DJ, Rochira W, Sammito M, Sánchez Rodríguez F, Sheldrick GM, Shelley KL, Simkovic F, Simpkin AJ, Skubak P, Sobolev E, Steiner RA, Stevenson K, Tews I, Thomas JMH, Thorn A, Valls JT, Uski V, Usón I, Vagin A, Velankar S, Vollmar M, Walden H, Waterman D, Wilson KS, Winn MD, Winter G, Wojdyr M, Yamashita K. The CCP4 suite: integrative software for macromolecular crystallography. Acta Crystallogr D Struct Biol 2023; 79:449-461. [PMID: 37259835 PMCID: PMC10233625 DOI: 10.1107/s2059798323003595] [Citation(s) in RCA: 269] [Impact Index Per Article: 134.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/19/2023] [Indexed: 06/02/2023] Open
Abstract
The Collaborative Computational Project No. 4 (CCP4) is a UK-led international collective with a mission to develop, test, distribute and promote software for macromolecular crystallography. The CCP4 suite is a multiplatform collection of programs brought together by familiar execution routines, a set of common libraries and graphical interfaces. The CCP4 suite has experienced several considerable changes since its last reference article, involving new infrastructure, original programs and graphical interfaces. This article, which is intended as a general literature citation for the use of the CCP4 software suite in structure determination, will guide the reader through such transformations, offering a general overview of the new features and outlining future developments. As such, it aims to highlight the individual programs that comprise the suite and to provide the latest references to them for perusal by crystallographers around the world.
Collapse
Affiliation(s)
- Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Mihaela Atanasova
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Haroldas Bagdonas
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Charles B. Ballard
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Arnaud Baslé
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - James Beilsten-Edmands
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Rafael J. Borges
- The Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil
| | - David G. Brown
- Laboratoires Servier SAS Institut de Recherches, Croissy-sur-Seine, France
| | - J. Javier Burgos-Mármol
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - John M. Berrisford
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL–EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Paul S. Bond
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Iracema Caballero
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Lucrezia Catapano
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, United Kingdom
| | - Grzegorz Chojnowski
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607 Hamburg, Germany
| | - Atlanta G. Cook
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King’s Buildings, Edinburgh EH9 3BF, United Kingdom
| | - Kevin D. Cowtan
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Tristan I. Croll
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
- Altos Labs, Portway Building, Granta Park, Great Abington, Cambridge CB21 6GP, United Kingdom
| | - Judit É. Debreczeni
- Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, United Kingdom
| | - Nicholas E. Devenish
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Eleanor J. Dodson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Tarik R. Drevon
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Paul Emsley
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Gwyndaf Evans
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0QS, United Kingdom
| | - Phil R. Evans
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Maria Fando
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - James Foadi
- Department of Mathematical Sciences, University of Bath, Bath, United Kingdom
| | - Luis Fuentes-Montero
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Elspeth F. Garman
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom
| | - Markus Gerstel
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Richard J. Gildea
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Kaushik Hatti
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Maarten L. Hekkelman
- Oncode Institute and Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Philipp Heuser
- European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Soon Wen Hoh
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Michael A. Hough
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Huw T. Jenkins
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Elisabet Jiménez
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Robbie P. Joosten
- Oncode Institute and Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ronan M. Keegan
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Nicholas Keep
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, United Kingdom
| | - Eugene B. Krissinel
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Petr Kolenko
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1, Czech Republic
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 55, 252 50 Vestec, Czech Republic
| | - Oleg Kovalevskiy
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Victor S. Lamzin
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607 Hamburg, Germany
| | - David M. Lawson
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Andrey A. Lebedev
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Andrew G. W. Leslie
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Bernhard Lohkamp
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Fei Long
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Martin Malý
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1, Czech Republic
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 55, 252 50 Vestec, Czech Republic
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Airlie J. McCoy
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Stuart J. McNicholas
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Ana Medina
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Claudia Millán
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - James W. Murray
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Garib N. Murshudov
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Robert A. Nicholls
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Martin E. M. Noble
- Translational and Clinical Research Institute, Newcastle University, Paul O’Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Robert Oeffner
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Navraj S. Pannu
- Department of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - James M. Parkhurst
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0QS, United Kingdom
| | - Nicholas Pearce
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Joana Pereira
- Biozentrum and SIB Swiss Institute of Bioinformatics, University of Basel, 4056 Basel, Switzerland
| | - Anastassis Perrakis
- Oncode Institute and Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Harold R. Powell
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Randy J. Read
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Daniel J. Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - William Rochira
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Massimo Sammito
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
- Discovery Centre, Biologics Engineering, AstraZeneca, Biomedical Campus, 1 Francis Crick Avenue, Trumpington, Cambridge CB2 0AA, United Kingdom
| | - Filomeno Sánchez Rodríguez
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - George M. Sheldrick
- Department of Structural Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Kathryn L. Shelley
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Felix Simkovic
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Adam J. Simpkin
- Laboratoires Servier SAS Institut de Recherches, Croissy-sur-Seine, France
| | - Pavol Skubak
- Department of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Egor Sobolev
- European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Roberto A. Steiner
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, United Kingdom
- Department of Biomedical Sciences, University of Padova, Italy
| | - Kyle Stevenson
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Ivo Tews
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Jens M. H. Thomas
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Andrea Thorn
- Institute for Nanostructure and Solid State Physics, Universität Hamburg, 22761 Hamburg, Germany
| | - Josep Triviño Valls
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Ville Uski
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Isabel Usón
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08003 Barcelona, Spain
| | - Alexei Vagin
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Sameer Velankar
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL–EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Melanie Vollmar
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL–EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Helen Walden
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - David Waterman
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Keith S. Wilson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Martyn D. Winn
- Scientific Computing Department, Science and Technology Facilities Council, Didcot OX11 0FA, United Kingdom
| | - Graeme Winter
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Marcin Wojdyr
- Global Phasing Limited (United Kingdom), Sheraton House, Castle Park, Cambridge CB3 0AX, United Kingdom
| | - Keitaro Yamashita
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
7
|
Yamashita K, Wojdyr M, Long F, Nicholls RA, Murshudov GN. GEMMI and Servalcat restrain REFMAC5. Acta Crystallogr D Struct Biol 2023; 79:368-373. [PMID: 37158197 PMCID: PMC10167671 DOI: 10.1107/s2059798323002413] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/13/2023] [Indexed: 05/10/2023] Open
Abstract
Macromolecular refinement uses experimental data together with prior chemical knowledge (usually digested into geometrical restraints) to optimally fit an atomic structural model into experimental data, while ensuring that the model is chemically plausible. In the CCP4 suite this chemical knowledge is stored in a Monomer Library, which comprises a set of restraint dictionaries. To use restraints in refinement, the model is analysed and template restraints from the dictionary are used to infer (i) restraints between concrete atoms and (ii) the positions of riding hydrogen atoms. Recently, this mundane process has been overhauled. This was also an opportunity to enhance the Monomer Library with new features, resulting in a small improvement in REFMAC5 refinement. Importantly, the overhaul of this part of CCP4 has increased flexibility and eased experimentation, opening up new possibilities.
Collapse
Affiliation(s)
- Keitaro Yamashita
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Trumpington, Cambridge CB2 0QH, United Kingdom
| | | | - Fei Long
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Trumpington, Cambridge CB2 0QH, United Kingdom
| | - Robert A Nicholls
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Trumpington, Cambridge CB2 0QH, United Kingdom
| | - Garib N Murshudov
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Trumpington, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
8
|
Atanasova M, Nicholls RA, Joosten RP, Agirre J. Updated restraint dictionaries for carbohydrates in the pyranose form. Acta Crystallogr D Struct Biol 2022; 78:455-465. [PMID: 35362468 PMCID: PMC8972801 DOI: 10.1107/s2059798322001103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 01/31/2022] [Indexed: 11/10/2022] Open
Abstract
Restraint dictionaries are used during macromolecular structure refinement to encapsulate intramolecular connectivity and geometric information. These dictionaries allow previously determined `ideal' values of features such as bond lengths, angles and torsions to be used as restraint targets. During refinement, restraints influence the model to adopt a conformation that agrees with prior observation. This is especially important when refining crystal structures of glycosylated proteins, as their resolutions tend to be worse than those of nonglycosylated proteins. Pyranosides, the overwhelming majority component in all forms of protein glycosylation, often display conformational errors in crystal structures. Whilst many of these flaws usually relate to model building, refinement issues may also have their root in suboptimal restraint dictionaries. In order to avoid subsequent misinterpretation and to improve the quality of all pyranose monosaccharide entries in the CCP4 Monomer Library, new dictionaries with improved ring torsion restraints, coordinates reflecting the lowest-energy ring pucker and updated geometry have been produced and evaluated. These new dictionaries are now part of the CCP4 Monomer Library and will be released with CCP4 version 8.0.
Collapse
Affiliation(s)
- Mihaela Atanasova
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Robert A. Nicholls
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Robbie P. Joosten
- Biochemistry Department, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands
| | - Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
9
|
Roversi P, Tronrud DE. Ten things I `hate' about refinement. Acta Crystallogr D Struct Biol 2021; 77:1497-1515. [PMID: 34866607 PMCID: PMC8647177 DOI: 10.1107/s2059798321011700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/04/2021] [Indexed: 12/05/2022] Open
Abstract
Macromolecular refinement is an optimization process that aims to produce the most likely macromolecular structural model in the light of experimental data. As such, macromolecular refinement is one of the most complex optimization problems in wide use. Macromolecular refinement programs have to deal with the complex relationship between the parameters of the atomic model and the experimental data, as well as a large number of types of prior knowledge about chemical structure. This paper draws attention to areas of unfinished business in the field of macromolecular refinement. In it, we describe ten refinement topics that we think deserve attention and discuss directions leading to macromolecular refinement software that would make the best use of modern computer resources to meet the needs of structural biologists of the twenty-first century.
Collapse
Affiliation(s)
- Pietro Roversi
- Institute of Agricultural Biology and Biotechnology, IBBA–CNR Unit of Milano, Via Bassini 15, I-20133 Milano, Italy
- Leicester Institute of Chemical and Structural Biology and Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7HR, United Kingdom
| | - Dale E. Tronrud
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
10
|
Yamashita K, Palmer CM, Burnley T, Murshudov GN. Cryo-EM single-particle structure refinement and map calculation using Servalcat. Acta Crystallogr D Struct Biol 2021; 77:1282-1291. [PMID: 34605431 PMCID: PMC8489229 DOI: 10.1107/s2059798321009475] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/11/2021] [Indexed: 11/10/2022] Open
Abstract
In 2020, cryo-EM single-particle analysis achieved true atomic resolution thanks to technological developments in hardware and software. The number of high-resolution reconstructions continues to grow, increasing the importance of the accurate determination of atomic coordinates. Here, a new Python package and program called Servalcat is presented that is designed to facilitate atomic model refinement. Servalcat implements a refinement pipeline using the program REFMAC5 from the CCP4 package. After the refinement, Servalcat calculates a weighted Fo - Fc difference map, which is derived from Bayesian statistics. This map helps manual and automatic model building in real space, as is common practice in crystallography. The Fo - Fc map helps in the visualization of weak features including hydrogen densities. Although hydrogen densities are weak, they are stronger than in the electron-density maps produced by X-ray crystallography, and some H atoms are even visible at ∼1.8 Å resolution. Servalcat also facilitates atomic model refinement under symmetry constraints. If point-group symmetry has been applied to the map during reconstruction, the asymmetric unit model is refined with the appropriate symmetry constraints.
Collapse
Affiliation(s)
- Keitaro Yamashita
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Colin M. Palmer
- Scientific Computing Department, UKRI Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0FA, United Kingdom
| | - Tom Burnley
- Scientific Computing Department, UKRI Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0FA, United Kingdom
| | - Garib N. Murshudov
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
11
|
de Vries I, Kwakman T, Lu XJ, Hekkelman ML, Deshpande M, Velankar S, Perrakis A, Joosten RP. New restraints and validation approaches for nucleic acid structures in PDB-REDO. Acta Crystallogr D Struct Biol 2021; 77:1127-1141. [PMID: 34473084 PMCID: PMC8411979 DOI: 10.1107/s2059798321007610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/26/2021] [Indexed: 11/10/2022] Open
Abstract
The quality of macromolecular structure models crucially depends on refinement and validation targets, which optimally describe the expected chemistry. Commonly used software for these two procedures has been designed and developed in a protein-centric manner, resulting in relatively few established features for the refinement and validation of nucleic acid-containing structure models. Here, new nucleic acid-specific approaches implemented in PDB-REDO are described, including a new restraint model using noncovalent geometries (base-pair hydrogen bonding and base-pair stacking) as refinement targets. New validation routines are also presented, including a metric for Watson-Crick base-pair geometry normality (ZbpG). Applying the PDB-REDO pipeline with the new restraint model to the whole Protein Data Bank (PDB) demonstrates an overall positive effect on the quality of nucleic acid-containing structure models. Finally, we discuss examples of improvements in the geometry of specific nucleic acid structures in the PDB. The new PDB-REDO models and pipeline are available at https://pdb-redo.eu/.
Collapse
Affiliation(s)
- Ida de Vries
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Tim Kwakman
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Xiang-Jun Lu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Maarten L. Hekkelman
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Mandar Deshpande
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL–EBI), Wellcome Genome Campus, Hinxton CB10 1SD, United Kingdom
| | - Sameer Velankar
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL–EBI), Wellcome Genome Campus, Hinxton CB10 1SD, United Kingdom
| | - Anastassis Perrakis
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Robbie P. Joosten
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
12
|
Nicholls RA, Joosten RP, Long F, Wojdyr M, Lebedev A, Krissinel E, Catapano L, Fischer M, Emsley P, Murshudov GN. Modelling covalent linkages in CCP4. Acta Crystallogr D Struct Biol 2021; 77:712-726. [PMID: 34076587 PMCID: PMC8171069 DOI: 10.1107/s2059798321001753] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/12/2021] [Indexed: 11/10/2022] Open
Abstract
In this contribution, the current protocols for modelling covalent linkages within the CCP4 suite are considered. The mechanism used for modelling covalent linkages is reviewed: the use of dictionaries for describing changes to stereochemistry as a result of the covalent linkage and the application of link-annotation records to structural models to ensure the correct treatment of individual instances of covalent linkages. Previously, linkage descriptions were lacking in quality compared with those of contemporary component dictionaries. Consequently, AceDRG has been adapted for the generation of link dictionaries of the same quality as for individual components. The approach adopted by AceDRG for the generation of link dictionaries is outlined, which includes associated modifications to the linked components. A number of tools to facilitate the practical modelling of covalent linkages available within the CCP4 suite are described, including a new restraint-dictionary accumulator, the Make Covalent Link tool and AceDRG interface in Coot, the 3D graphical editor JLigand and the mechanisms for dealing with covalent linkages in the CCP4i2 and CCP4 Cloud environments. These integrated solutions streamline and ease the covalent-linkage modelling workflow, seamlessly transferring relevant information between programs. Current recommended practice is elucidated by means of instructive practical examples. By summarizing the different approaches to modelling linkages that are available within the CCP4 suite, limitations and potential pitfalls that may be encountered are highlighted in order to raise awareness, with the intention of improving the quality of future modelled covalent linkages in macromolecular complexes.
Collapse
Affiliation(s)
- Robert A. Nicholls
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Robbie P. Joosten
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Oncode Institute, The Netherlands
| | - Fei Long
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Marcin Wojdyr
- Global Phasing Limited, Sheraton House, Castle Park, Cambridge CB3 0AX, United Kingdom
| | - Andrey Lebedev
- CCP4, STFC Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, United Kingdom
| | - Eugene Krissinel
- CCP4, STFC Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, United Kingdom
| | - Lucrezia Catapano
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, United Kingdom
| | - Marcus Fischer
- Chemical Biology and Therapeutics and Structural Biology, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Paul Emsley
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Garib N. Murshudov
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|