1
|
Bazayeva M, Andreini C, Rosato A. A database overview of metal-coordination distances in metalloproteins. Acta Crystallogr D Struct Biol 2024; 80:362-376. [PMID: 38682667 PMCID: PMC11066882 DOI: 10.1107/s2059798324003152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
Metalloproteins are ubiquitous in all living organisms and take part in a very wide range of biological processes. For this reason, their experimental characterization is crucial to obtain improved knowledge of their structure and biological functions. The three-dimensional structure represents highly relevant information since it provides insight into the interaction between the metal ion(s) and the protein fold. Such interactions determine the chemical reactivity of the bound metal. The available PDB structures can contain errors due to experimental factors such as poor resolution and radiation damage. A lack of use of distance restraints during the refinement and validation process also impacts the structure quality. Here, the aim was to obtain a thorough overview of the distribution of the distances between metal ions and their donor atoms through the statistical analysis of a data set based on more than 115 000 metal-binding sites in proteins. This analysis not only produced reference data that can be used by experimentalists to support the structure-determination process, for example as refinement restraints, but also resulted in an improved insight into how protein coordination occurs for different metals and the nature of their binding interactions. In particular, the features of carboxylate coordination were inspected, which is the only type of interaction that is commonly present for nearly all metals.
Collapse
Affiliation(s)
- Milana Bazayeva
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Claudia Andreini
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Antonio Rosato
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
2
|
Urzhumtsev A, Lunin VY. Analytic modeling of inhomogeneous-resolution maps in cryo-electron microscopy and crystallography. IUCRJ 2022; 9:728-734. [PMID: 36381145 PMCID: PMC9634607 DOI: 10.1107/s2052252522008260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Refinement of macromolecular atomic models versus experimental maps in crystallography and cryo-electron microscopy is a critical step in structure solution. For an appropriate comparison, model maps should mimic the imperfections in the experimental maps, mainly atomic disorder and limited resolution, which are often inhomogeneous over the molecular region. In the suggested method, these model maps are calculated as the sum of atomic contributions expressed through a specifically designed function describing a solitary spherical wave. Thanks to this function, atomic contributions are analytically expressed through their atomic displacement parameter and local resolution, a value now associated with each atom. Such a full analytic dependence of inhomogeneous-resolution map values on model parameters permits the refinement of all of these parameters together.
Collapse
Affiliation(s)
- Alexandre Urzhumtsev
- Centre for Integrative Biology, Institute of Genetics and Molecular and Cellular Biology, Illkirch 67404, France
- Département de Physique, Université de Lorraine, Vandoeuvre-lès-Nancy 54506, France
| | - Vladimir Y. Lunin
- Institute of Mathematical Problems of Biology RAS, Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Pushchino 142290, Russian Federation
| |
Collapse
|
3
|
Zirbel CL, Auffinger P. Lone Pair…π Contacts and Structure Signatures of r(UNCG) Tetraloops, Z-Turns, and Z-Steps: A WebFR3D Survey. Molecules 2022; 27:molecules27144365. [PMID: 35889236 PMCID: PMC9323530 DOI: 10.3390/molecules27144365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
Z-DNA and Z-RNA have long appeared as oddities to nucleic acid scientists. However, their Z-step constituents are recurrently observed in all types of nucleic acid systems including ribosomes. Z-steps are NpN steps that are isostructural to Z-DNA CpG steps. Among their structural features, Z-steps are characterized by the presence of a lone pair…π contact that involves the stacking of the ribose O4′ atom of the first nucleotide with the 3′-face of the second nucleotide. Recently, it has been documented that the CpG step of the ubiquitous r(UNCG) tetraloops is a Z-step. Accordingly, such r(UNCG) conformations were called Z-turns. It has also been recognized that an r(GAAA) tetraloop in appropriate conditions can shapeshift to an unusual Z-turn conformation embedding an ApA Z-step. In this report, we explore the multiplicity of RNA motifs based on Z-steps by using the WebFR3D tool to which we added functionalities to be able to retrieve motifs containing lone pair…π contacts. Many examples that underscore the diversity and universality of these motifs are provided as well as tutorial guidance on using WebFR3D. In addition, this study provides an extensive survey of crystallographic, cryo-EM, NMR, and molecular dynamics studies on r(UNCG) tetraloops with a critical view on how to conduct database searches and exploit their results.
Collapse
Affiliation(s)
- Craig L. Zirbel
- Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403, USA;
| | - Pascal Auffinger
- Architecture et Réactivité de l’ARN, UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 67084 Strasbourg, France
- Correspondence: ; Tel.: +33-3-8841-7049; Fax: +33-3-8860-2218
| |
Collapse
|
4
|
Caputo AT, Ibba R, Le Cornu JD, Darlot B, Hensen M, Lipp CB, Marcianò G, Vasiljević S, Zitzmann N, Roversi P. Crystal polymorphism in fragment-based lead discovery of ligands of the catalytic domain of UGGT, the glycoprotein folding quality control checkpoint. Front Mol Biosci 2022; 9:960248. [PMID: 36589243 PMCID: PMC9794592 DOI: 10.3389/fmolb.2022.960248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022] Open
Abstract
None of the current data processing pipelines for X-ray crystallography fragment-based lead discovery (FBLD) consults all the information available when deciding on the lattice and symmetry (i.e., the polymorph) of each soaked crystal. Often, X-ray crystallography FBLD pipelines either choose the polymorph based on cell volume and point-group symmetry of the X-ray diffraction data or leave polymorph attribution to manual intervention on the part of the user. Thus, when the FBLD crystals belong to more than one crystal polymorph, the discovery pipeline can be plagued by space group ambiguity, especially if the polymorphs at hand are variations of the same lattice and, therefore, difficult to tell apart from their morphology and/or their apparent crystal lattices and point groups. In the course of a fragment-based lead discovery effort aimed at finding ligands of the catalytic domain of UDP-glucose glycoprotein glucosyltransferase (UGGT), we encountered a mixture of trigonal crystals and pseudotrigonal triclinic crystals-with the two lattices closely related. In order to resolve that polymorphism ambiguity, we have written and described here a series of Unix shell scripts called CoALLA (crystal polymorph and ligand likelihood-based assignment). The CoALLA scripts are written in Unix shell and use autoPROC for data processing, CCP4-Dimple/REFMAC5 and BUSTER for refinement, and RHOFIT for ligand docking. The choice of the polymorph is effected by carrying out (in each of the known polymorphs) the tasks of diffraction data indexing, integration, scaling, and structural refinement. The most likely polymorph is then chosen as the one with the best structure refinement Rfree statistic. The CoALLA scripts further implement a likelihood-based ligand assignment strategy, starting with macromolecular refinement and automated water addition, followed by removal of the water molecules that appear to be fitting ligand density, and a final round of refinement after random perturbation of the refined macromolecular model, in order to obtain unbiased difference density maps for automated ligand placement. We illustrate the use of CoALLA to discriminate between H3 and P1 crystals used for an FBLD effort to find fragments binding to the catalytic domain of Chaetomium thermophilum UGGT.
Collapse
Affiliation(s)
- Alessandro T. Caputo
- Biochemistry Department, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
- Commonwealth Scientific and Industrial Research Organisation, Clayton, VIC, Australia
| | - Roberta Ibba
- Biochemistry Department, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - James D. Le Cornu
- Biochemistry Department, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Scotland, United Kingdom
| | - Benoit Darlot
- Biochemistry Department, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
| | - Mario Hensen
- Biochemistry Department, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
| | - Colette B. Lipp
- Biochemistry Department, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
| | - Gabriele Marcianò
- Biochemistry Department, University of Oxford, Oxford, United Kingdom
| | - Snežana Vasiljević
- Biochemistry Department, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
| | - Nicole Zitzmann
- Biochemistry Department, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
- *Correspondence: Nicole Zitzmann, ; Pietro Roversi,
| | - Pietro Roversi
- IBBA-CNR Unit of Milano, Institute of Agricultural Biology and Biotechnology, Milano, Italy
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, United Kingdom
- *Correspondence: Nicole Zitzmann, ; Pietro Roversi,
| |
Collapse
|