1
|
Revilla P, Alves ML, Andelković V, Balconi C, Dinis I, Mendes-Moreira P, Redaelli R, Ruiz de Galarreta JI, Vaz Patto MC, Žilić S, Malvar RA. Traditional Foods From Maize ( Zea mays L.) in Europe. Front Nutr 2022; 8:683399. [PMID: 35071287 PMCID: PMC8780548 DOI: 10.3389/fnut.2021.683399] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
Maize (Zea mays L.) is one of the major crops of the world for feed, food, and industrial uses. It was originated in Central America and introduced into Europe and other continents after Columbus trips at the end of the 15th century. Due to the large adaptability of maize, farmers have originated a wide variability of genetic resources with wide diversity of adaptation, characteristics, and uses. Nowadays, in Europe, maize is mainly used for feed, but several food specialties were originated during these five centuries of maize history and became traditional food specialties. This review summarizes the state of the art of traditional foodstuffs made with maize in Southern, South-Western and South-Eastern Europe, from an historic evolution to the last research activities that focus on improving sustainability, quality and safety of food production.
Collapse
Affiliation(s)
- Pedro Revilla
- Department of Plant Production, Misión Biológica de Galicia (CSIC), Pontevedra, Spain
| | - Mara Lisa Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Violeta Andelković
- Department of Genebank, Maize Research Institute Zemun Polje, Belgrade, Serbia
| | - Carlotta Balconi
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Bergamo, Italy
| | - Isabel Dinis
- Instituto Politécnico de Coimbra, Escola Superior Agrária, Coimbra, Portugal
| | | | - Rita Redaelli
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Bergamo, Italy
| | - Jose Ignacio Ruiz de Galarreta
- Department of Plant Production, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Vitoria, Spain
| | - Maria Carlota Vaz Patto
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sladana Žilić
- Department Food Technology and Biochemistry, Maize Research Institute Zemun Polje, Belgrade, Serbia
| | - Rosa Ana Malvar
- Department of Plant Production, Misión Biológica de Galicia (CSIC), Pontevedra, Spain
| |
Collapse
|
2
|
Shim YY, Olivia CM, Liu J, Boonen R, Shen J, Reaney MJT. Secoisolariciresinol Diglucoside and Cyanogenic Glycosides in Gluten-free Bread Fortified with Flaxseed Meal. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9551-9558. [PMID: 27998066 DOI: 10.1021/acs.jafc.6b03962] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Flaxseed (Linum usitatissimum L.) meal contains cyanogenic glycosides (CGs) and the lignan secoisolariciresinol diglucoside (1). Gluten-free (GF) doughs and baked goods were produced with added flaxseed meal (20%, w/w) then 1, and CGs were determined in fortified flour, dough, and bread with storage (0, 1, 2, and 4 weeks) at different temperatures (-18, 4, and 22-23 °C). 1 was present in flour, dough, and GF bread after baking. 1 was stable with extensive storage (up to 4 weeks) and was not affected by storage temperature. CGs in flaxseed meal and fortified GF samples were analyzed by 1H NMR of the cyanohydrins. Linamarin and/or linustatin were the primary CGs in both flaxseed meal and fortified flour. CGs decreased with storage in dough fortified with flaxseed meal or GF bread after baking. GF bakery food products fortified with flaxseed meal had reduced CGs but remained a good source of dietary 1.
Collapse
Affiliation(s)
- Youn Young Shim
- Prairie Tide Chemicals Inc. , 102 Melville Street, Saskatoon, Saskatchewan S7J 0R1, Canada
- Department of Plant Sciences, University of Saskatchewan , 51 Campus Drive, Saskatoon, Saskatchewan S7N 5A8, Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University , Guangzhou, Guangdong 510632, China
| | - Clara M Olivia
- Prairie Tide Chemicals Inc. , 102 Melville Street, Saskatoon, Saskatchewan S7J 0R1, Canada
| | - Jun Liu
- Department of Plant Sciences, University of Saskatchewan , 51 Campus Drive, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Rineke Boonen
- Prairie Tide Chemicals Inc. , 102 Melville Street, Saskatoon, Saskatchewan S7J 0R1, Canada
- Food Technology Agrobiotechnology Nutrition and Health Science, Wageningen University , Droevendaalsesteeg 4, Wageningen 6708 PB, Netherlands
| | - Jianheng Shen
- Department of Plant Sciences, University of Saskatchewan , 51 Campus Drive, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Martin J T Reaney
- Prairie Tide Chemicals Inc. , 102 Melville Street, Saskatoon, Saskatchewan S7J 0R1, Canada
- Department of Plant Sciences, University of Saskatchewan , 51 Campus Drive, Saskatoon, Saskatchewan S7N 5A8, Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University , Guangzhou, Guangdong 510632, China
| |
Collapse
|
3
|
Cornell HJ, Stelmasiak T, Small DM, Buddrick O. Application of the rat liver lysosome assay to determining the reduction of toxic gliadin content during breadmaking. Food Chem 2016; 192:924-7. [PMID: 26304430 DOI: 10.1016/j.foodchem.2015.07.105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 07/10/2015] [Accepted: 07/22/2015] [Indexed: 12/18/2022]
Abstract
Enriched caricain was able to detoxify a major proportion of the gliadin in wholemeal wheat dough by allowing it to react for 5h at 37 °C during the fermentation stage. A reduction of 82% in toxicity, as determined by the rat-liver lysosome assay, was achieved using 0.03% enzyme on weight of dough. Without enzyme, only 26% reduction occurred. The difference in reduction of toxicity achieved is statistically significant (p < 0.01). The results are very similar to those obtained in our previous work using an immuno assay and the same enzyme preparation. They confirm the value of caricain as a means of reducing the toxicity of gliadin and open the way for enzyme therapy as an adjunct to the gluten free diet. This approach should lead to better control over the elimination of dietary gluten intake in conditions such as coeliac disease and dermatitis herpetiformis.
Collapse
Affiliation(s)
- Hugh J Cornell
- Applied Chemistry, School of Applied Sciences, RMIT University, Melbourne, VIC 3001, Australia
| | | | - Darryl M Small
- Applied Chemistry, School of Applied Sciences, RMIT University, Melbourne, VIC 3001, Australia
| | - Oliver Buddrick
- Applied Chemistry, School of Applied Sciences, RMIT University, Melbourne, VIC 3001, Australia.
| |
Collapse
|
4
|
Buddrick O, Cornell HJ, Small DM. Reduction of toxic gliadin content of wholegrain bread by the enzyme caricain. Food Chem 2015; 170:343-7. [DOI: 10.1016/j.foodchem.2014.08.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/23/2014] [Accepted: 08/10/2014] [Indexed: 12/21/2022]
|
5
|
Yazynina E, Johansson M, Jägerstad M, Jastrebova J. Low folate content in gluten-free cereal products and their main ingredients. Food Chem 2008. [DOI: 10.1016/j.foodchem.2008.03.055] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Cabrera-Chávez F, Rouzaud-Sández O, Sotelo-Cruz N, Calderón de la Barca AM. Transglutaminase treatment of wheat and maize prolamins of bread increases the serum IgA reactivity of celiac disease patients. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:1387-1391. [PMID: 18193828 DOI: 10.1021/jf0724163] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Celiac disease (CD) is mediated by IgA antibodies to wheat gliadins and tissue transglutaminase (tTG). As tTG is homologous to microbial transglutaminase (mTG) used to improve foodstuff quality, it could elicit the immune response of celiac patients. This study evaluated the reactivity of IgA of celiac patients to prolamins of wheat and gluten-free (maize and rice flours) breads mTG-treated or not. Prolamins extracted from wheat and gluten-free breads were analyzed by ELISA and immunodetected on membranes with individual or pooled sera from nine celiac patients recently diagnosed. Sera pool IgA titers were higher against prolamins of mTG-treated wheat or gluten-free breads than against mTG-untreated, mainly due to two individual patients' sera. The electrophoretic pattern of gluten-free bread prolamins was changed by the mTG treatment, and a new 31000 band originated in maize was recognized by three CD patients' IgA.
Collapse
Affiliation(s)
- Francisco Cabrera-Chávez
- Departamento de Nutrición y Metabolismo, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a la Victoria Km 0.6, Hermosillo, Mexico
| | | | | | | |
Collapse
|