Bhat ZF, Morton JD, Bekhit AEDA, Kumar S, Bhat HF. Thermal processing implications on the digestibility of meat, fish and seafood proteins.
Compr Rev Food Sci Food Saf 2021;
20:4511-4548. [PMID:
34350699 DOI:
10.1111/1541-4337.12802]
[Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/03/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022]
Abstract
Thermal processing is an inevitable part of the processing and preparation of meat and meat products for human consumption. However, thermal processing techniques, both commercial and domestic, induce modifications in muscle proteins which can have implications for their digestibility. The nutritive value of muscle proteins is closely related to their digestibility in the gastrointestinal tract and is determined by the end products that it presents in the assimilable form (amino acids and small peptides) for the absorption. The present review examines how different thermal processing techniques, such as sous-vide, microwave, stewing, roasting, boiling, frying, grilling, and steam cooking, affect the digestibility of muscle proteins in the gastrointestinal tract. By altering the functional and structural properties of muscle proteins, thermal processing has the potential to influence the digestibility negatively or positively, depending on the processing conditions. Thermal processes such as sous-vide can induce favourable changes, such as partial unfolding or exposure of cleavage sites, in muscle proteins and improve their digestibility whereas processes such as stewing and roasting can induce unfavourable changes, such as protein aggregation, severe oxidation, cross linking or increased disulfide (S-S) content and decrease the susceptibility of proteins during gastrointestinal digestion. The review examines how the underlying mechanisms of different processing conditions can be translated into higher or lower protein digestibility in detail. This review expands the current understanding of muscle protein digestion and generates knowledge that will be indispensable for optimizing the digestibility of thermally processed muscle foods for maximum nutritional benefits and optimal meal planning.
Collapse