1
|
AbdElRaouf K, Farrag HS, El-Ganzuri MA, El-Sayed WM. A new bithiophene inhibited amyloid-β accumulation and enhanced cognitive function in the hippocampus of aluminum-induced Alzheimer's disease in adult rats. J Alzheimers Dis 2024; 102:1084-1098. [PMID: 39497290 DOI: 10.1177/13872877241295405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive and irreversible neurological disorder that gradually deteriorates an individual's ability to carry out even the simplest tasks. OBJECTIVE This study was undertaken to investigate the potential therapeutic efficacy of a novel bithiophene in a rat model of aluminum-induced AD pathology. METHODS A total of 108 adult male albino rats weighing 160 ± 20 g, were randomly assigned to six groups: (1) a control group administered DMSO, (2) group receiving a high dose of bithiophene (1 mg/kg), (3) a model group received AlCl3 (100 mg/kg), those rats were then treated by either (4) bithiophene low dose (0.5 mg/kg), (5) high dose (1 mg/kg), or (6) memantine (20 mg/kg). RESULTS Low dose bithiophene treatment was a promising strategy for mitigating oxidative stress and improving synaptic plasticity. This was demonstrated by reductions in malondialdehyde level, and increased activities of superoxide dismutase and catalase, and elevated glutathione content. Likewise, low dose bithiophene enhanced synaptic plasticity through a reduction in excitatory glutamate and norepinephrine levels, while increasing dopamine. Moreover, bithiophene significantly downregulated the expression of GSAP, GSK3-β, and p53, which are implicated in AD progression. This treatment also decreased caspase 3 and amyloid-β (Aβ1-42) accumulation in the hippocampus. Finally, behavioral assessments revealed that low dose bithiophene significantly enhanced learning abilities, as proved by Morris water maze. CONCLUSIONS Low dose bithiophene mitigated AD through ameliorating oxidative stress, promoting synaptic plasticity, inhibiting the Aβ accumulation, and enhancing the cognitive functions in a rat model.
Collapse
Affiliation(s)
- Kholoud AbdElRaouf
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | | - Monir A El-Ganzuri
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Wael M El-Sayed
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
AbdEl-Raouf K, Farrag HSH, Rashed R, Ismail MA, El-Ganzuri MA, El-Sayed WM. New bithiophene derivative attenuated Alzheimer's disease induced by aluminum in a rat model via antioxidant activity and restoration of neuronal and synaptic transmission. J Trace Elem Med Biol 2024; 82:127352. [PMID: 38070385 DOI: 10.1016/j.jtemb.2023.127352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND One of the hypotheses that leads to an increased incidence of Alzheimer's disease (AD) is the accumulation of aluminum in the brain's frontal cortex. The present study aimed to evaluate the therapeutic role of a novel bithiophene derivative at two doses against AlCl3-induced AD in a rat model. METHODOLOGY Adult male rats were divided into six groups, 18 rats each. Group 1: naïve animals, group 2: animals received a daily oral administration of bithiophene dissolved in DMSO (1 mg/kg) for 30 days every other day, groups 3-6: animals received a daily oral administration of AlCl3 (100 mg/kg/day) for 45 consecutive days. Groups 4 and 5 received an oral administration of low or high dose of the bithiophene (0.5 or 1 mg/kg, respectively). Group 6; Animals were treated with a daily oral dose of memantine (20 mg/kg) for 30 consecutive days. MAIN FINDINGS Al disturbed the antioxidant milieu, elevated the lipid peroxidation, and depleted the antioxidants. It also disturbed the synaptic neurotransmission by elevating the activities of acetylcholine esterase and monoamine oxidase resulting in the depletion of dopamine and serotonin and accumulation of glutamate and norepinephrine. Al also deteriorated the expression of genes involved in apoptosis and the production of amyloid-β plaques as well as phosphorylation of tau. The new bithiophene at the low dose reversed most of the previous deleterious effects of aluminum in the cerebral cortex and was in many instances superior to the reference drug; memantine. CONCLUSION Taking together, the bithiophene modulated the AD etiology through antioxidant activity, prevention of neuronal and synaptic loss, and probably mitigating the formation of amyloid-β plaques and phosphorylation of tau.
Collapse
Affiliation(s)
- Kholoud AbdEl-Raouf
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566 Cairo, Egypt
| | | | - Rashed Rashed
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566 Cairo, Egypt
| | - Mohamed A Ismail
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Monir A El-Ganzuri
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566 Cairo, Egypt
| | - Wael M El-Sayed
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566 Cairo, Egypt.
| |
Collapse
|
3
|
Ekpono EU, Eze ED, Adam AM, Ibiam UA, Obasi OU, Ifie JE, Ekpono EU, Alum EU, Noreen S, Awuchi CG, Aja PM. Ameliorative Potential of Pumpkin Seed Oil ( Cucurbita pepo L.) Against Tramadol-Induced Oxidative Stress. Dose Response 2024; 22:15593258241226913. [PMID: 38234695 PMCID: PMC10793191 DOI: 10.1177/15593258241226913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Background of the Study The increase in the therapeutic use of tramadol in the management of moderate to severe pains in some disease conditions and its unregulated access has led to its associated toxicity and there is little or no information on the protection against its associated toxicity. Aim of the Study Considering the medicinal value of pumpkin seed oil, its availability, and neglected use, it becomes necessary to evaluate the possible potential of the seed oil in tramadol-induced oxidative stress in Wister Albino rats. Methods of the Study This study used fifty-six (56) albino rats to determine the impact of Cucurbita pepo seed oil (CPSO) on tramadol-induced oxidative stress. The rats were grouped into 7. After a week of acclimatization, rats in group 1 (normal control) had access to water and food, while rats in group 2 received 5 mL/Kg (b.w) of normal saline. 100 mg/kg of tramadol (TM) was delivered to groups 3-6 to induce toxicity. The third group (TM control) received no treatment, whilst the other 3 groups (TM-CPSO treatment groups) received 5, 2.5, and 1.5 mL/Kg of CPSO, respectively. Group 7 received only 5 mL/kg CPSO (CPSO group). Similarly, groups 2 through 7 had unrestricted access to food and water for 42 days and received treatments via oral intubation once per day. Indicators of oxidative stress were discovered in the brain homogenate. Results TM toxicity was demonstrated by a considerable increase (P < .05) in the brain MDA level and a significant drop (P < .05) in the brain GSH level, as well as a significant reduction (P < .05) in GPx, catalase, SOD, GST, and quinone reductase activities. Conclusion The dose-dependent delivery of CPSO was able to restore not only the activity but also the concentrations of the altered markers.
Collapse
Affiliation(s)
- Ezebuilo U. Ekpono
- Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
- Department of Science Laboratory Technology, Federal Polytechnique, Oko, Nigeria
| | - Ejike D. Eze
- Department of Physiology, School of Medicine, Kabale University, Kabale, Uganda
| | - Afodun M Adam
- Department of Medical Imaging Science, School of Health Sciences, University of Rwanda, Rwanda
| | - Udu A. Ibiam
- Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
| | - Orji U. Obasi
- Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
| | - Josiah E. Ifie
- Department of Biochemistry, Kampala International University, Bushenyi, Uganda
| | - Ejike U. Ekpono
- Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
| | - Esther U. Alum
- Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
- Department of Research Publication and Extensions, Kampala International University, Kampala, Uganda
| | - Sana Noreen
- University Institute of Diet and Nutritional Sciences, University of Lahore, Lahore, Pakistan
| | - Chinaza G. Awuchi
- Department of Biochemistry, Kampala International University, Bushenyi, Uganda
- School of Natural and Applied Sciences, Kampala International University, Kampala, Uganda
| | - Patrick M. Aja
- Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
- Department of Biochemistry, Kampala International University, Bushenyi, Uganda
| |
Collapse
|
4
|
Hussain A, Kausar T, Sehar S, Sarwar A, Ashraf AH, Jamil MA, Noreen S, Rafique A, Iftikhar K, Aslam J, Quddoos MY, Majeed MA, Zerlasht M. Utilization of pumpkin, pumpkin powders, extracts, isolates, purified bioactives and pumpkin based functional food products: A key strategy to improve health in current post COVID 19 period: An updated review. APPLIED FOOD RESEARCH 2022; 2:100241. [PMID: 38620808 PMCID: PMC9675195 DOI: 10.1016/j.afres.2022.100241] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/07/2022] [Accepted: 11/18/2022] [Indexed: 07/30/2023]
Abstract
Progression of today's world has been given setback due to the adversity of a novel, viral and deadly outbreak COVID 19, which raised the concerns of the scientists, researchers and health related officials about the inherent and adaptive immune system of the living body and its relation with healthy diet balanced with pharma foods. Choice of right food can help to build and boost adaptive immunity and pumpkin due to excellent profile of functional and nutraceutical constituents must be the part of both infected and non-infected person's daily diet. Vitamins, minerals, phenolic acids, essential oils, peptides, carotenoids and polysaccharides present in pumpkin could accommodate the prevailing deficiencies in the body to fought against the pathogens. Pumpkins are well equipped with nutraceuticals and functional ingredients therefore, consumption and processing of this remarkable fruit must be encouraged as pharma food due to its antihyperlipidemic, antiviral, anti-inflammatory, antihyperglycemic, immunomodulatory, antihypertensive, antimicrobial and antioxidant potential, and these pharmacological properties of pumpkin are directly or indirectly related to the COVID 19 outbreak. Utilization of pumpkin has a domain in the form of powders, extracts, isolates, and pumpkin incorporated food products. A wide range of healthy, nutritious and functional food products has been developed from pumpkin, which includes juice, soup, porridge, chips, biscuits, bread, cake, bar and noodles. In recent times some innovative and novel technologies have been applied to process and preserve pumpkin for its enhanced shelf life and bioaccessibility of nutrients. Need of healthy eating in current post COVID 19 period is very crucial for healthy population, and medicinal foods like pumpkin, and bioactive compounds present in this functional food could play a vital role in developing a healthy community around the globe.
Collapse
Affiliation(s)
- Ashiq Hussain
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | - Tusneem Kausar
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | - Sawera Sehar
- Department of Zoology, University of Sargodha, Pakistan
| | - Ayesha Sarwar
- Institute of Chemistry, University of Sargodha, Pakistan
| | | | | | - Saima Noreen
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | - Ayesha Rafique
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | - Khansa Iftikhar
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | - Jawed Aslam
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | | | - Muhammad Abid Majeed
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | - Mehwish Zerlasht
- Gomal University, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|