1
|
|
2
|
Koutsoupidou M, Groumpas E, Karanasiou IS, Christopoulou M, Nikita K, Uzunoglu N. The effect of using a dielectric matching medium in focused microwave radiometry: an anatomically detailed head model study. Med Biol Eng Comput 2017; 56:809-816. [PMID: 29027087 DOI: 10.1007/s11517-017-1729-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/04/2017] [Indexed: 11/29/2022]
Abstract
Microwave radiometry is a passive technique used to measure in-depth temperature distributions inside the human body, potentially useful in clinical applications. Experimental data imply that it may provide the capability of detecting in-depth local variations of temperature and/or conductivity of excitable tissues at microwave frequencies. Specifically, microwave radiometry may allow the real-time monitoring of brain temperature and/or conductivity changes, associated with local brain activation. In this paper, recent results of our ongoing research regarding the capabilities of focused microwave radiometry for brain intracranial applications are presented. Electromagnetic and thermal simulation analysis was performed using an anatomically detailed head model and a dielectric cap as matching medium placed around it, in order to improve the sensitivity and the focusing attributes of the system. The theoretical results were compared to experimental data elicited while exploring that the sensing depth and spatial resolution of the proposed imaging method at 2.1 GHz areas located 3 cm deep inside the brain can be measured, while at 2.5 GHz, the sensing area is confined specifically to the area of interest. The results exhibit the system's potential as a complementary brain imaging tool for multifrequency in-depth passive monitoring which could be clinically useful for therapeutic, diagnostic, and research applications.
Collapse
Affiliation(s)
- Maria Koutsoupidou
- School of Electrical and Computer Engineering, National Technical University of Athens, Zografou Campus, Athens, Greece. .,School of Natural & Mathematical Sciences, King's College London, Strand Campus, London, UK.
| | - Evangelos Groumpas
- School of Electrical and Computer Engineering, National Technical University of Athens, Zografou Campus, Athens, Greece
| | - Irene S Karanasiou
- School of Electrical and Computer Engineering, National Technical University of Athens, Zografou Campus, Athens, Greece.,Department of Mathematics and Engineering Science, Hellenic Army University, Vari, Athens, Greece
| | - Maria Christopoulou
- School of Electrical and Computer Engineering, National Technical University of Athens, Zografou Campus, Athens, Greece
| | - Konstantina Nikita
- School of Electrical and Computer Engineering, National Technical University of Athens, Zografou Campus, Athens, Greece
| | - Nikolaos Uzunoglu
- School of Electrical and Computer Engineering, National Technical University of Athens, Zografou Campus, Athens, Greece
| |
Collapse
|
3
|
Kouloulias V, Karanasiou I, Giamalaki M, Matsopoulos G, Kouvaris J, Kelekis N, Uzunoglu N. Theoretical analysis, design and development of a 27-MHz folded loop antenna as a potential applicator in hyperthermia treatment. Int J Hyperthermia 2015; 31:23-32. [PMID: 25578580 DOI: 10.3109/02656736.2014.981873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE A hyperthermia system using a folded loop antenna applicator at 27 MHz for soft tissue treatment was investigated both theoretically and experimentally to evaluate its clinical value. MATERIALS AND METHODS The electromagnetic analysis of a 27-MHz folded loop antenna for use in human tissue was based on a customised software tool and led to the design and development of the proposed hyperthermia system. The system was experimentally validated using specific absorption rate (SAR) distribution estimations through temperature distribution measurements of a muscle tissue phantom after electromagnetic exposure. Various scenarios for optimal antenna positioning were also performed. RESULTS Comparison of the theoretical and experimental analysis results shows satisfactory agreement. The SAR level of 50% reaches 8 cm depth in the tissue phantom. Thus, based on the maximum observed SAR values that were of the order of 100 W/kg, the antenna specified is suitable for deep tumour heating. CONCLUSIONS Theoretical and experimental SAR distribution results as derived from this study are in agreement. The proposed folded loop antenna seems appropriate for use in hyperthermia treatment, achieving proper planning and local treatment of deeply seated affected areas and lesions.
Collapse
|
4
|
Rodrigues DB, Maccarini PF, Salahi S, Oliveira TR, Pereira PJS, Limao-Vieira P, Snow BW, Reudink D, Stauffer PR. Design and optimization of an ultra wideband and compact microwave antenna for radiometric monitoring of brain temperature. IEEE Trans Biomed Eng 2014; 61:2154-60. [PMID: 24759979 DOI: 10.1109/tbme.2014.2317484] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We present the modeling efforts on antenna design and frequency selection to monitor brain temperature during prolonged surgery using noninvasive microwave radiometry. A tapered log-spiral antenna design is chosen for its wideband characteristics that allow higher power collection from deep brain. Parametric analysis with the software HFSS is used to optimize antenna performance for deep brain temperature sensing. Radiometric antenna efficiency (η) is evaluated in terms of the ratio of power collected from brain to total power received by the antenna. Anatomical information extracted from several adult computed tomography scans is used to establish design parameters for constructing an accurate layered 3-D tissue phantom. This head phantom includes separate brain and scalp regions, with tissue equivalent liquids circulating at independent temperatures on either side of an intact skull. The optimized frequency band is 1.1-1.6 GHz producing an average antenna efficiency of 50.3% from a two turn log-spiral antenna. The entire sensor package is contained in a lightweight and low-profile 2.8 cm diameter by 1.5 cm high assembly that can be held in place over the skin with an electromagnetic interference shielding adhesive patch. The calculated radiometric equivalent brain temperature tracks within 0.4 °C of the measured brain phantom temperature when the brain phantom is lowered 10 °C and then returned to the original temperature (37 °C) over a 4.6-h experiment. The numerical and experimental results demonstrate that the optimized 2.5-cm log-spiral antenna is well suited for the noninvasive radiometric sensing of deep brain temperature.
Collapse
|
5
|
de Bruijne M, Van der zee J, Ameziane A, Van Rhoon GC. Quality control of superficial hyperthermia by treatment evaluation. Int J Hyperthermia 2011; 27:199-213. [DOI: 10.3109/02656736.2010.525226] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
6
|
Arunachalam K, Maccarini P, De Luca V, Tognolatti P, Bardati F, Snow B, Stauffer P. Detection of vesicoureteral reflux using microwave radiometry-system characterization with tissue phantoms. IEEE Trans Biomed Eng 2011; 58:1629-36. [PMID: 21257366 DOI: 10.1109/tbme.2011.2107515] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Microwave (MW) radiometry is proposed for passive monitoring of kidney temperature to detect vesicoureteral reflux (VUR) of urine that is externally heated by a MW hyperthermia device and thereafter reflows from the bladder to kidneys during reflux. Here, we characterize in tissue-mimicking phantoms the performance of a 1.375 GHz radiometry system connected to an electromagnetically (EM) shielded microstrip log spiral antenna optimized for VUR detection. Phantom EM properties are characterized using a coaxial dielectric probe and network analyzer (NA). Power reflection and receive patterns of the antenna are measured in layered tissue phantom. Receiver spectral measurements are used to assess EM shielding provided by a metal cup surrounding the antenna. Radiometer and fiberoptic temperature data are recorded for varying volumes (10-30 mL) and temperaturesg (40-46°C) of the urine phantom at 35 mm depth surrounded by 36.5°C muscle phantom. Directional receive pattern with about 5% power spectral density at 35 mm target depth and better than -10 dB return loss from tissue load are measured for the antenna. Antenna measurements demonstrate no deterioration in power reception and effective EM shielding in the presence of the metal cup. Radiometry power measurements are in excellent agreement with the temperature of the kidney phantom. Laboratory testing of the radiometry system in temperature-controlled phantoms supports the feasibility of passive kidney thermometry for VUR detection.
Collapse
|
7
|
Stauffer PR, Maccarini P, Arunachalam K, Craciunescu O, Diederich C, Juang T, Rossetto F, Schlorff J, Milligan A, Hsu J, Sneed P, Vujaskovic Z. Conformal microwave array (CMA) applicators for hyperthermia of diffuse chest wall recurrence. Int J Hyperthermia 2010; 26:686-98. [PMID: 20849262 DOI: 10.3109/02656736.2010.501511] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE This article summarises the evolution of microwave array applicators for heating large area chest wall disease as an adjuvant to external beam radiation, systemic chemotherapy, and potentially simultaneous brachytherapy. METHODS Current devices used for thermotherapy of chest wall recurrence are reviewed. The largest conformal array applicator to date is evaluated in four studies: (1) ability to conform to the torso is demonstrated with a CT scan of a torso phantom and MR scan of the conformal water bolus component on a mastectomy patient; (2) specific absorption rate (SAR) and temperature distributions are calculated with electromagnetic and thermal simulation software for a mastectomy patient; (3) SAR patterns are measured with a scanning SAR probe in liquid muscle phantom for a buried coplanar waveguide CMA; and (4) heating patterns and patient tolerance of CMA applicators are characterised in a clinical pilot study with 13 patients. RESULTS CT and MR scans demonstrate excellent conformity of CMA applicators to contoured anatomy. Simulations demonstrate effective control of heating over contoured anatomy. Measurements confirm effective coverage of large treatment areas with no gaps. In 42 hyperthermia treatments, CMA applicators provided well-tolerated effective heating of up to 500 cm(2) regions, achieving target temperatures of T(min) = 41.4 ± 0.7°C, T(90) = 42.1 ± 0.6°C, T(ave) = 42.8 ± 0.6°C, and T(max) = 44.3 ± 0.8°C as measured in an average of 90 points per treatment. CONCLUSION The CMA applicator is an effective thermal therapy device for heating large-area superficial disease such as diffuse chest wall recurrence. It is able to cover over three times the treatment area of conventional hyperthermia devices while conforming to typical body contours.
Collapse
Affiliation(s)
- Paul R Stauffer
- Radiation Oncology Department, Duke University, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Arunachalam K, Maccarini PF, De Luca V, Bardati F, Snow BW, Stauffer PR. Modeling the detectability of vesicoureteral reflux using microwave radiometry. Phys Med Biol 2010; 55:5417-35. [PMID: 20736499 PMCID: PMC2972589 DOI: 10.1088/0031-9155/55/18/010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We present the modeling efforts on antenna design, frequency selection and receiver sensitivity estimation to detect vesicoureteral reflux (VUR) using microwave (MW) radiometry as warm urine from the bladder maintained at fever range temperature using a MW hyperthermia device reflows into the kidneys. The radiometer center frequency (f(c)), frequency band (Deltaf) and aperture radius (r(a)) of the physical antenna for kidney temperature monitoring are determined using a simplified universal antenna model with a circular aperture. Anatomical information extracted from the computed tomography (CT) images of children aged 4-6 years is used to construct a layered 3D tissue model. Radiometric antenna efficiency is evaluated in terms of the ratio of the power collected from the target at depth to the total power received by the antenna (eta). The power ratio of the theoretical antenna is used to design a microstrip log spiral antenna with directional radiation pattern over f(c) +/- Deltaf/2. Power received by the log spiral from the deep target is enhanced using a thin low-loss dielectric matching layer. A cylindrical metal cup is proposed to shield the antenna from electromagnetic interference (EMI). Transient thermal simulations are carried out to determine the minimum detectable change in the antenna brightness temperature (deltaT(B)) for 15-25 mL urine refluxes at 40-42 degrees C located 35 mm from the skin surface. Theoretical antenna simulations indicate maximum eta over 1.1-1.6 GHz for r(a) = 30-40 mm. Simulations of the 35 mm radius tapered log spiral yielded a higher power ratio over f(c) +/- Deltaf/2 for the 35-40 mm deep targets in the presence of an optimal matching layer. Radiometric temperature calculations indicate deltaT(B) 0.1 K for the 15 mL urine at 40 degrees C and 35 mm depth. Higher eta and deltaT(B) were observed for the antenna and matching layer inside the metal cup. Reflection measurements of the log spiral in a saline phantom are in agreement with the simulation data. The numerical study suggests that a radiometer with f(c) = 1.35 GHz, Deltaf = 500 MHz and detector sensitivity better than 0.1 K would be the appropriate tool to noninvasively detect VUR using the log spiral antenna.
Collapse
Affiliation(s)
- Kavitha Arunachalam
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India.
| | | | | | | | | | | |
Collapse
|
9
|
Juang T, Stauffer PR, Neuman DG, Schlorff JL. Multilayer conformal applicator for microwave heating and brachytherapy treatment of superficial tissue disease. Int J Hyperthermia 2009; 22:527-44. [PMID: 17079212 DOI: 10.1080/02656730600931815] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
PURPOSE The purpose of this study was to construct and perform preliminary functionality evaluations of a multilayer conformal applicator with provisions for thermal monitoring, tight conformity and simultaneous microwave heating and brachytherapy treatment of large-area contoured surfaces. MATERIALS AND METHODS The multilayer conformal applicator consists of thermal monitoring catheters for fibre-optic monitoring of skin temperatures, a waterbolus, a PCB microwave antenna array, a dielectric spacer for brachytherapy considerations, brachytherapy catheters for delivering HDR radiation and an inflatable air bladder for improving conformity to contoured surfaces. The applicator also includes an elastic attachment structure to hold the applicator securely in place on the patient. The conformity of the applicator to irregular surfaces was evaluated through CT imaging of the applicator fitted onto a life-sized human torso phantom. The fluid flow dynamics of the waterbolus, which impact the effectiveness of temperature control, were evaluated with thermometry during a 19 degrees C step change temperature of the circulating water. RESULTS CT imaging showed improved conformity to the torso phantom surface following the application of gentle inward pressure from inflating the outer air bladder. Only a small number of 1-5 mm sized air gaps separated the conformal applicator and tissue surface. Thermometry testing of the bolus fluid flow dynamics demonstrated temperature uniformity within +/-0.82 degrees C across a 19 x 34 x 0.6 cm area bolus and +/-0.85 degrees C across a large 42 x 32 x 0.6 cm area bolus. CONCLUSION CT scans of the applicator confirmed that the applicator conforms well to complex body contours and should maintain good conformity and positional stability even when worn on a mobile patient. Thermometry testing of two different waterbolus geometries demonstrated that uniform circulation and temperature control can be maintained throughout large, complex bolus shapes.
Collapse
Affiliation(s)
- T Juang
- Department of Radiation Oncology, University of California at San Francisco, San Francisco, CA, USA
| | | | | | | |
Collapse
|
10
|
Birkelund Y, Jacobsen S, Arunachalam K, Maccarini P, Stauffer PR. Flow patterns and heat convection in a rectangular water bolus for use in superficial hyperthermia. Phys Med Biol 2009; 54:3937-53. [PMID: 19494426 PMCID: PMC2735859 DOI: 10.1088/0031-9155/54/13/001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This paper investigates both numerically and experimentally the spatio-temporal effects of water flow in a custom-made water bolus used for superficial hyperthermia generated by a 915-MHz, 4 x 3 microwave applicator array. Similar hyperthermia models referenced in the literature use a constant water temperature and uniform heat flux to describe conduction and convection energy exchange within the heating apparatus available to cool the tissue surface. The results presented in this paper show that the spatially varying flow pattern and rate are vital factors for the overall heat control applicability of the 5 mm thick bolus under study. Regions with low flow rates and low heat convection clearly put restrictions on the maximum microwave energy possible within the limits of skin temperature rise under the bolus. Our analysis is illustrated by experimental flow front studies using a contrast liquid set-up monitored by high definition video and complemented by numerical analysis of liquid flow and heat exchange within the rectangular water bolus loaded by malignant tissue. Important factors for the improvement of future bolus designs are also discussed in terms of diameter and configuration of the water input and output tubing network.
Collapse
Affiliation(s)
- Yngve Birkelund
- Electrical Engineering Group, Department of Physics and Technology, Faculty of Science, University of Tromsø, Tromsø, Norway.
| | | | | | | | | |
Collapse
|
11
|
Jacobsen S, Klemetsen Ø. Improved detectability in medical microwave radio-thermometers as obtained by active antennas. IEEE Trans Biomed Eng 2009; 55:2778-85. [PMID: 19126458 DOI: 10.1109/tbme.2008.2002156] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Microwave radiometry is a spectral measurement technique for resolving blackbody radiation of heated matter above absolute zero. The emission levels vary with frequency and are at body temperatures maximized in the infrared spectral band. Medical radio-thermometers are mostly noninvasive short-range instruments that can provide temperature distributions in subcutaneous biological tissues when operated in the microwave region. However, a crucial limitation of the microwave radiometric observation principle is the extremely weak signal level of the thermal noise emitted by the lossy material (-174 dBm/Hz at normal body temperature). To improve the radiometer SNR, we propose to integrate a tiny, moderate gain, low-noise preamplifier (LNA) close to the antenna terminals as to obtain increased detectability of deep seated thermal gradients within the volume under investigation. The concept is verified experimentally in a lossy phantom medium by scanning an active antenna across a thermostatically controlled water phantom with a hot object embedded at 38 mm depth. Three different setups were investigated with decreasing temperature contrasts between the target and ambient medium. As a direct consequence of less ripple on the raw radiometric signal, statistical analysis shows a marked increase in signal-to-clutter ratio of the brightness temperature spatial scan profiles, when comparing active antenna operation with conventional passive setups.
Collapse
Affiliation(s)
- Svein Jacobsen
- Department of Physics and Technology, Faculty of Science, University of Tromsø, N-9037 Tromsø, Norway.
| | | |
Collapse
|
12
|
Gong Y, Wang G. SUPERFICIAL TUMOR HYPERTHERMIA WITH FLAT LEFT-HANDED METAMATERIAL LENS. ACTA ACUST UNITED AC 2009. [DOI: 10.2528/pier09091401] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Arunachalam K, Stauffer PR, Maccarini PF, Jacobsen S, Sterzer F. Characterization of a digital microwave radiometry system for noninvasive thermometry using a temperature-controlled homogeneous test load. Phys Med Biol 2008; 53:3883-901. [PMID: 18591733 DOI: 10.1088/0031-9155/53/14/011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Microwave radiometry has been proposed as a viable noninvasive thermometry approach for monitoring subsurface tissue temperatures and potentially controlling power levels of multielement heat applicators during clinical hyperthermia treatments. With the evolution of technology, several analog microwave radiometry devices have been developed for biomedical applications. In this paper, we describe a digital microwave radiometer with built-in electronics for signal processing and automatic self-calibration. The performance of the radiometer with an Archimedean spiral receive antenna is evaluated over a bandwidth of 3.7-4.2 GHz in homogeneous and layered water test loads. Controlled laboratory experiments over the range of 30-50 degrees C characterize measurement accuracy, stability, repeatability and penetration depth sensitivity. The ability to sense load temperature through an intervening water coupling bolus of 6 mm thickness is also investigated. To assess the clinical utility and sensitivity to electromagnetic interference (EMI), experiments are conducted inside standard clinical hyperthermia treatment rooms with no EM shielding. The digital radiometer provided repeatable measurements with 0.075 degrees C resolution and standard deviation of 0.217 degrees C for homogeneous and layered tissue loads at temperatures between 32-45 degrees C. Within the 3.7-4.2 GHz band, EM noise rejection was good other than some interference from overhead fluorescent lights in the same room as the radiometer. The system response obtained for ideal water loads suggests that this digital radiometer should be useful for estimating subcutaneous tissue temperatures under a 6 mm waterbolus used during clinical hyperthermia treatments. The accuracy and stability data obtained in water test loads of several configurations support our expectation that single band radiometry should be sufficient for sub-surface temperature monitoring and power control of large multielement array superficial hyperthermia applicators.
Collapse
Affiliation(s)
- K Arunachalam
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
14
|
Bardati F, Iudicello S. Modeling the Visibility of Breast Malignancy by a Microwave Radiometer. IEEE Trans Biomed Eng 2008; 55:214-21. [DOI: 10.1109/tbme.2007.899354] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Juang T, Neuman D, Schlorff J, Stauffer PR. Construction of a conformal water bolus vest applicator for hyperthermia treatment of superficial skin cancer. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2004:3467-70. [PMID: 17271032 DOI: 10.1109/iembs.2004.1403973] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Large area chestwall recurrence of breast carcinoma can be treated with moderate temperature hyperthermia in combination with radiation or chemotherapy. For diffuse chestwall disease, hyperthermia is best delivered with a conformal microwave array (CMA) applicator using a temperature-controlled water bolus designed specifically to fit complex contours and maintain contact with the tissue surface to prevent air gaps which distort the microwave power deposition pattern. In order to maintain the desired temperature range of 41-45 degrees C during local hyperthermia treatments, it is necessary to have an effective fluid flow system to serve as a buffer and prevent overheating of skin, which can lead to small blisters or, in rare cases, deeper burns. The fluid flow dynamics of a vest shaped open water bag design is evaluated with thermometry during a step temperature change of circulating water. The data confirm the feasibility of uniform circulation and temperature control throughout complex bolus shapes. This water bolus design should improve temperature uniformity of current treatments for superficial tissue disease.
Collapse
Affiliation(s)
- T Juang
- Radiation Oncology Department, University of California at San Francisco, CA USA
| | | | | | | |
Collapse
|
16
|
Stauffer P, Schlorff J, Taschereau R, Juang T, Neuman D, Maccarini P, Pouliot J, Hsu J. Combination applicator for simultaneous heat and radiation. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2004:2514-7. [PMID: 17270784 DOI: 10.1109/iembs.2004.1403724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We present the development of operator and patient friendly conformal applicators that can deliver moderate temperature hyperthermia simultaneously with radiation in superficial tissue overlying contoured anatomy. This applicator combines the uniform heating capabilities of large area conformal microwave array (CMA) flexible printed circuit board applicators with a patient interface (coupling bolus) that facilitates positioning of brachytherapy sources at a fixed distance (e.g. 1.5 cm) from the skin. A customized inverse treatment planning program (IPSA) was used to optimize spacing of a parallel array of source catheters and separation distance from skin, and to characterize the effects of bolus thickness and conformal array curvature on radiation dose uniformity. Performance of a 15 cmx15 cm combination applicator was evaluated in flat and contoured homogenous muscle tissue models. Results demonstrate effective heating and radiation distributions to 1-1.5 cm depth and out to the periphery of the array. This applicator should prove useful for treatment of diffuse chestwall disease located over contoured anatomy that is difficult to treat with external beam radiation. By applying heat and radiation simultaneously for maximum synergism of modalities, this device should expand the number of patients that can benefit from effective thermoradiotherapy for superficial disease.
Collapse
Affiliation(s)
- P Stauffer
- Dept. of Radiat. Oncology, California Univ., San Francisco, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Rolfsnes HO, Maccarini PF, Jacobsen S, Stauffer PR. Design of spiral antennas for radiometric temperature measurement. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2004:2522-5. [PMID: 17270786 DOI: 10.1109/iembs.2004.1403726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We are developing a microwave hyperthermia system for the treatment of chestwall recurrence of breast cancer. To improve power control of heating applicators, we intend to measure tumor temperature noninvasively during treatment, using radiometry. We are designing single-arm Archimedean spirals for use as receive antennas with a radiometer collecting thermal radiation from different tissue volumes at 1.9-2.3 and 3.7-4.2 GHz. We modeled the antennas numerically. First, we studied the antennas in terms of impedance matching to feedlines. Second, we investigated radiation mechanisms of the spirals radiating into lossy tissue. For small spacing between turns, the surface currents on the spiral were in phase on several neighboring windings, producing strong radiation from a circular, wavelength related region. At these locations, surface currents were also in phase on opposite sides of spiral, contributing to a more centrally peaked radiation pattern with deeper energy penetration than is obtained with a widely dispersed pattern. Finally, we studied the effect of distance from the spiral feedpoint to the radiating region on antenna efficiency. We found this distance should be minimized to reduce power loss from the less useful inner turns of the spirals. The optimization of these design parameters may produce significant improvement of antenna efficiency and improve depth-sensing capability of microwave radiometry.
Collapse
Affiliation(s)
- H O Rolfsnes
- Dept. of Radiat. Oncology, California Univ., San Francisco, CA, USA
| | | | | | | |
Collapse
|
18
|
Maccarini PF, Rolfsnes HO, Neuman D, Stauffer P. Optimization of a dual concentric conductor antenna for superficial hyperthermia applications. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2004:2518-21. [PMID: 17270785 DOI: 10.1109/iembs.2004.1403725] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Dual concentric conductor antennas (DCCs) have been proposed as effective radiators for microwave hyperthermia applications, due to simplicity of construction from flexible printed circuit board (PCB) material. With proper design, the power deposition (SAR) pattern is uniform across the DCC. The effect of a single antenna can be combined in conformal nonphased arrays to form a region of nearly flat temperature distribution over a large area down to 1-1.5 cm depth. In the past, DCC antenna performance was analyzed using in-house FDTD software. Recently available electromagnetic simulation software provides reduced simulation time, increased accuracy and a user friendly interface with the ability to sweep design parameters to achieve critical optimization goals. More detail on antenna loading conditions provides enhanced design accuracy by accounting for second order effects neglected in previous modeling. In particular, recent design efforts have focused on improving antenna efficiency and reducing losses and reflections in the feedline network. A second challenge involves measurement of antenna properties in conditions more similar to the treatment environment, since temperature and loading condition affect antenna radiation and thus design requirements. We present the challenges of both antenna design and characterization, along with preliminary results of recent design improvements.
Collapse
|
19
|
Johnson JE, Neuman DG, Maccarini PF, Juang T, Stauffer PR, Turner P. Evaluation of a dual-arm Archimedean spiral array for microwave hyperthermia. Int J Hyperthermia 2006; 22:475-90. [PMID: 16971368 DOI: 10.1080/02656730600905595] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
PURPOSE This effort describes a third-party performance evaluation of a novel, commercial, dual-armed Archimedean spiral array hyperthermia applicator. The applicator is analysed for its ability to couple efficiently into muscle equivalent phantom loads, operate over a broad bandwidth to help accommodate variable tissue properties and generate predictable and repeatable SAR contours that are adaptable to clinically probable disease shapes. MATERIALS AND METHODS Characterization of the applicator includes E-field and return-loss measurements in liquid muscle tissue-equivalent phantom, as well as comparison of 'treatment-planning' simulations of several possible array SAR patterns with measured SAR from non-coherently driven spiral array antennae. RESULTS The applicator demonstrates a reasonably low return loss over a large bandwidth and the ability to generate a very uniform heating pattern. Ability to adjust SAR contours spatially to fit specific shapes is also demonstrated. CONCLUSIONS This device should prove a welcome addition to a currently limited set of superficial heating applicators to provide controllable heating of superficial tissue disease.
Collapse
Affiliation(s)
- J E Johnson
- University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | | |
Collapse
|
20
|
Johnson JE, Maccarini PF, Neuman D, Stauffer PR. Automatic Temperature Controller for Multielement Array Hyperthermia Systems. IEEE Trans Biomed Eng 2006; 53:1006-15. [PMID: 16761827 DOI: 10.1109/tbme.2006.873559] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This paper concerns the optimization and performance analysis of an automatic control algorithm for managing power output of large multielement array hyperthermia applicators. Simulation and corresponding measurement of controller performance in a solid tissue equivalent phantom model is utilized for analysis of controller response to dynamically varying thermal load conditions that simulate clinical treatments. The analysis leads to an optimum controller which demonstrates the ability to achieve a uniform and stable temperature profile over a large surface area regardless of surrounding thermal load. This paper presents several advancements to the performance of a previously published control routine, including: 1) simplified simulation techniques for thorough characterization of controller performance; 2) an optimization procedure leading to an improved hybrid control algorithm for maintaining optimal performance during periods of both "rising" and "steady-state" temperature; 3) performance analysis of a control algorithm tailored for large area hyperthermia treatments with a mulitelement array applicator. The optimized hybrid controller is applied to the conformal microwave array (CMA) hyperthermia system previously developed for heating large area surface disease such as diffuse chestwall recurrence of breast carcinoma, and shown to produce stable, uniform temperatures under the multielement array applicator for all thermal load conditions.
Collapse
Affiliation(s)
- Jessi E Johnson
- Department of Radiation Oncology, University of California, San Francisco 94143, USA.
| | | | | | | |
Collapse
|
21
|
Jacobsen S, Rolfsnes HO, Stauffer PR. Characteristics of Microstrip Muscle-Loaded Single-Arm Archimedean Spiral Antennas as Investigated by FDTD Numerical Computations. IEEE Trans Biomed Eng 2005; 52:321-30. [PMID: 15709670 DOI: 10.1109/tbme.2004.840502] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The radiation characteristics and mode of operation of single-arm, groundplane backed, Archimedean spiral antennas are investigated by means of conformal finite difference time domain numerical analysis. It is shown that this antenna type may be categorized as a well-matched, broadband, circularly polarized traveling wave structure that can be fed directly by nonbalanced coaxial networks. The study further concentrates on relevant design and description features parameterized in terms of measures like radiation efficiency, sensing depth, directivity, and axial ratio of complementary polarizations. We document that an antenna of only 30-mm transverse size produces circularly polarized waves in a two-octave frequency span (2-8 GHz) with acceptable radiation efficiency (76%-94%) when loaded by muscle-like tissue.
Collapse
Affiliation(s)
- Svein Jacobsen
- Electrical Engineering Group, Institute of Physics, Faculty of Science, University of Tromsø, N-9037 Tromsø, Norway.
| | | | | |
Collapse
|
22
|
Taschereau R, Stauffer PR, Hsu IC, Schlorff JL, Milligan AJ, Pouliot J. Radiation dosimetry of a conformal heat-brachytherapy applicator. Technol Cancer Res Treat 2004; 3:347-58. [PMID: 15270585 DOI: 10.1177/153303460400300404] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The purpose of this paper is to report the radiation dosimetric characteristics of a new combination applicator for delivering heat and radiation simultaneously to large area superficial disease <1.5 cm deep. The applicator combines an array of brachytherapy catheters (for radiation delivery) with a conformal printed circuit board microwave antenna array (for heat generation), and a body-conforming 5-10 mm thick temperature-controlled water bolus. The rationale for applying both modalities simultaneously includes the potential for significantly higher response rate due to enhanced synergism of modalities, and lower peak toxicity due to temporal extension of heat and radiation induced toxicities. Treatment plans and radiation dosimetry are calculated with IPSA (an optimization tool developed at UCSF) for 15 x 15 cm(2) and 35 x 24 cm(2) applicators, lesion thicknesses of 5 to 15 mm, flat and curved surfaces, and catheter separation of 5 and 10 mm. The effect on skin dose of bolus thickness and presence of thin copper antenna structures between radiation source and tissue are also evaluated. Results demonstrate the ability of the applicator to provide conformal radiation dose coverage for up to 15 mm deep target volumes under the applicator. For clinically acceptable plans, tumor coverage is > 98%, homogeneity index > 0.95 and the percentage of normal tissue irradiated is < 20%. The dose gradient at the skin surface varies from 3 to 5 cGy/mm depending on bolus thickness and lesion depth. Attenuation of the photon beam by the printed circuit antenna array is of the order 0.25% and secondary electron emissions are absorbed completely within 5 mm of water bolus and plastic layers. Both phenomena can then be neglected in dose calculations allowing commercial software to be used for treatment planning. This novel applicator should prove useful for the treatment of diffuse chestwall disease located over contoured anatomy that may be difficult to treat with single field external beam therapy. By delivering heat and radiation simultaneously, increased synergism is expected with a TER in the range of 2-5. Lowering radiation dose by an equivalent factor may produce lower radiation toxicity with similar efficacy, while preserving the option of subsequent retreatment(s) with thermoradiotherapy in order to further extend patient survival.
Collapse
Affiliation(s)
- Richard Taschereau
- Department of Radiation Oncology, University of California, San Francisco, 1600 Divisadero Street, San Franciso, CA 94143-1708, USA
| | | | | | | | | | | |
Collapse
|
23
|
Dreher MR, Elas M, Ichikawa K, Barth ED, Chilkoti A, Rosen GM, Halpern HJ, Dewhirst M. Nitroxide conjugate of a thermally responsive elastin-like polypeptide for noninvasive thermometry. Med Phys 2004; 31:2755-62. [PMID: 15543780 DOI: 10.1118/1.1782677] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Hyperthermia, as an adjuvant with radiation and chemotherapy, has shown promise in the treatment of cancer. The relevant biological effects of a hyperthermia treatment are both time and temperature-dependent, creating a need for accurate thermometry. We present a novel noninvasive thermometry modality that combines a temperature responsive biopolymer, the elastin-like polypeptide (ELP), and nitroxide to produce an ELP-nitroxide conjugate. When examined with electron paramagnetic resonance (EPR) spectroscopy, the ELP-nitroxide conjugate has temperature-dependent spectral line widths whose predictive accuracy is approximately 0.3 degrees C (80 microM). We believe that the temperature-dependent changes observed in the EPR spectrum are due to the combined effect of temperature, viscosity and effective radius on the rotational correlation time of the ELP-nitroxide conjugate.
Collapse
Affiliation(s)
- Matthew R Dreher
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Jacobsen S, Stauffer PR. Nonparametric 1-D temperature restoration in lossy media using Tikhonov regularization on sparse radiometry data. IEEE Trans Biomed Eng 2003; 50:178-88. [PMID: 12665031 DOI: 10.1109/tbme.2002.807655] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microwave thermometry has the potential to characterize thermal gradients in lossy materials down to a few centimeters depth. The problem of retrieving temperature profiles from sets of brightness temperatures is studied using Galerkin expansion of one-dimensional (1-D) temperature profiles combined with Tikhonov regularization and predefined boundary conditions. From a priori knowledge of the temperature field shape, smooth Chebyshev polynomials are used as basis functions in the series expansion. The proposed estimator does not require iterative calculations that are normally performed using conventional numerical methods for signal parameter estimation and is, thus, very fast. Noise effects versus bandwidth limitations (smoothness of solutions) are studied in terms of four performance indexes defined in the text. In general, statistical spread of the temperature estimator increases with increasing number of Chebyshev polynomials. Systematic deviation from true values (bias) decreases as the number of Chebyshev polynomials increases. Results show that smooth temperature profiles can be reproduced using 6-7 Chebyshev polynomials. With additional constraints such as boundary conditions and maxima localization, a three-frequency-band radiometric scan is sufficient to produce acceptable results in regions with low thermal gradients. As the spatial variability of the 1-D temperature profile increases, more radiometric bands (5-6) are required to provide nonbiased estimates.
Collapse
Affiliation(s)
- Svein Jacobsen
- Electrical Engineering Group, Institute of Physics, Faculty of Science, University of Tromsø, N-9037 Tromsø, Norway
| | | |
Collapse
|