1
|
Therkildsen ER, Lorentzen J, Perez MA, Nielsen JB. Evaluation of spasticity: IFCN Handbook Chapter. Clin Neurophysiol 2025; 173:1-23. [PMID: 40068367 DOI: 10.1016/j.clinph.2025.02.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/20/2025] [Accepted: 02/17/2025] [Indexed: 05/09/2025]
Abstract
There is no generally accepted definition of spasticity, but hyperexcitable stretch reflexes, exaggerated tendon jerks, clonus, spasms, cramps, increased resistance to passive joint movement, sustained involuntary muscle activity and aberrant muscle activation, including co-contraction of antagonist muscles are all signs and symptoms which are usually associated clinically to the term spasticity. This review describes how biomechanical and electrophysiological techniques may be used to provide quantitative and objective measures of each of these signs and symptoms. The review further describes how neurophysiological techniques may be used to evaluate pathophysiological changes in spinal motor control mechanisms. It is emphasized that understanding the pathophysiology and distinguishing the specific signs and symptoms associated with spasticity, using objective, valid, and reproducible measurements, is essential for providing optimal therapy.
Collapse
Affiliation(s)
- Eva Rudjord Therkildsen
- Department of Neuroscience, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark
| | - Jakob Lorentzen
- Department of Neuroscience, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark; Department of Pediatrics, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 10, Dk-2100 Copenhagen Ø, Denmark
| | - Monica A Perez
- Shirley Ryan Ability Lab, Chicago, USA; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, USA; Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, USA; Edward Jr. Hines VA Hospital, Chicago, USA
| | - Jens Bo Nielsen
- Department of Neuroscience, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark; The Elsass Foundation, Holmegårdsvej 28, Charlottenlund, 2920, Denmark.
| |
Collapse
|
2
|
González-Matilla R, Abuín-Porras V, Mínguez-Esteban I, Heredia-Rizo AM. Biomechanical and clinical differences in muscle tone, stiffness, range of motion, and pain perception in children with cerebral palsy: a cross-sectional study. Front Physiol 2025; 16:1588084. [PMID: 40303594 PMCID: PMC12037481 DOI: 10.3389/fphys.2025.1588084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 03/27/2025] [Indexed: 05/02/2025] Open
Abstract
Introduction Spasticity and altered muscle tone are key features in children with neurodevelopmental disorders, particularly cerebral palsy (CP). They impact movement, range of motion (ROM), and pain perception, influencing functional abilities and quality of life. Understanding the intrinsic muscle differences in children with CP can help improve clinical assessment and therapeutic interventions. This study aims to evaluate differences in muscle tone, stiffness, ROM, and pain perception between children with CP and typically developing peers using objective biomechanical measures. Methods An observational, cross-sectional study was conducted with 40 participants of both sexes (20 children with CP, 20 typically developing peers). Muscle tone and stiffness of the lower limb muscles were measured using the Myoton PRO device. ROM was assessed by goniometry, and pain perception was evaluated using the Visual Analog Scale during a Straight Leg Raise (SLR) test. A generalized linear mixed model was used to detect differences in myotonometry, ROM, and pain perception measurements. In participants with CP, the Pearson product-moment correlation coefficient analysis was used to explore possible associations between clinical features and muscle tone and stiffness. Results Children with CP exhibited reduced ROM, with a significant group effect for hip flexion (P < 0.001; η2 = 0.843), knee extension (P < 0.001; η2 = 0.355), and ankle flexion (P < 0.001; η2 = 0.959) and higher pain perception during the SLR test (P < 0.001; η2 = 0.831), compared to controls. Myotonometry revealed significantly increased muscle stiffness of the rectus femoris (P = 0.004; η2 = 0.112) and adductor muscles (P = 0.019; η2 = 0.074) in the CP group, with no differences in muscle tone between the groups. Sex-related differences were found for muscle tone and stiffness, with males showing higher values. Correlation analyses indicated that adductor muscles stiffness was associated with CP severity. Conclusion Children with CP demonstrate significant changes in ROM, pain perception, and muscle stiffness, emphasizing the need for targeted therapeutic interventions. These findings support the use of objective biomechanical tools for assessing muscle properties in clinical settings, contributing to better management strategies for spasticity-related impairments.
Collapse
Affiliation(s)
- Ramón González-Matilla
- Departamento de Fisioterapia, Investigación y Deporte. Centro Universitario FISIDEC, Universidad de Córdoba, Córdoba, Spain
- Centro de Atención Infantil Temprana, Universidad de Córdoba, Córdoba, Spain
- CTS 1110: Understanding Movement and Self in health from Science (UMSS) Research Group, Andalusia, Spain
| | - Vanesa Abuín-Porras
- Department of Physiotherapy, Universidad Europea de Madrid, Faculty of Medicine, Health and Sports, Villaviciosa de Odón, Spain
| | - Isabel Mínguez-Esteban
- Department of Physiotherapy, Universidad Europea de Madrid, Faculty of Medicine, Health and Sports, Villaviciosa de Odón, Spain
| | - Alberto M. Heredia-Rizo
- CTS 1110: Understanding Movement and Self in health from Science (UMSS) Research Group, Andalusia, Spain
- Instituto de Biomedicina de Sevilla, IBiS (Hospitales Universitarios Virgen del Rocío y Macarena/CSIC/Universidad de Sevilla), Sevilla, Spain
- Departamento de Fisioterapia, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
3
|
Yan J, Luo Q, Chen Z, Wang Z, Guo X, Xie Q, Oetomo D, Tan Y, Niu CM. Spike-Based Neuromorphic Model of Spasticity for Generation of Affected Neural Activity. IEEE Trans Neural Syst Rehabil Eng 2025; 33:1360-1371. [PMID: 40173059 DOI: 10.1109/tnsre.2025.3557044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Spasticity is a common motor symptom that disrupt muscle contraction and hence movements. Proper management of spasticity requires identification of its origins and reasoning of the therapeutic plans. Challenges arise because spasticity might originate from elevated activity in both the cortical and sub-cortical pathways. No existing models (animal or computational) could cover all possibilities leading to spasticity, especially the peripheral causes such as hyperreflexia. To bridge this gap, this work develops a novel computational, spike-based neuromorphic model of spasticity, named NEUSPA. Rather than relying solely on a monosynaptic spinal loop comprising alpha motoneurons, sensory afferents, synapses, skeletal muscles, and muscle spindles, the NEUSPA model introduces two additional inputs: additive (ADD) and multiplicative (MUL). These inputs generate velocity-dependent EMG responses. The effectiveness of the NEUSPA model is validated using classic experiments from the literature and data collected from two post-stroke patients with affected upper-limb movements. The model is also applied to simulate two real-world scenarios that patients may encounter. Simulation results suggest that hyperreflexia due to extra inputs was sufficient to produce spastic EMG responses. However, EMG onsets were more sensitive to ADD inputs (slope =0.628, p <0.0001, r ${}^{{2}} =0.96$ ) compared to MUL inputs (slope =0.471, p <0.0001, r ${}^{{2}} =0.92$ ). Additionally, simulation of finger-pressing on a deformable object indicated that spasticity could increase the duration from 1.03s to 1.20s compared to a non-impaired condition. These results demonstrate that NEUSPA effectively synthesizes abnormal physiological data, facilitating decision-making and machine learning in neurorehabilitation.
Collapse
|
4
|
Chen Z, Liu Y, Yan J, Wang J, Oetomo D, Tan Y, Niu CM. Differentiation in additive and multiplicative inputs to motoneuron pool as origins of spasticity - a neuromorphic modeling study . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083678 DOI: 10.1109/embc40787.2023.10340479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Spasticity is characterized by a velocity-dependent increase in the tonic stretch reflex. Evidence suggests that spasticity originates from hyperactivity in the descending tract or reflex loop. To pinpoint the source of hyperactivity, however, is difficult due to lack of human data in-vivo. Thus, we implemented a neuromorphic model to revive the neurodynamics with spiking neuronal activity. Two types of input were modeled: (1) the additive condition (ADD) to apply tonic synaptic inputs directly into the reflex loop; (2) the multiplicative (MUL) condition to adjust the loop gains within the reflex loop. Results show that both conditions produced antagonist EMG responses resembling patient data. The timing of spasticity is more sensitive to the ADD condition, whereas the amplitude of spastic EMG is more sensitive to the MUL condition. In conclusion, our model shows that both additive and multiplicative hyperactivities suffice to elicit velocity-dependent spastic electromyographic signals (EMG), but with different sensitivities. This simulation study suggests that spasticity caused by different origins may be discernable by the progression of severity, which may help individualized goalsetting and parameter-selection in rehabilitation.Clinical Relevance-Potential application of neuromorphic modeling on spasticity includes selection of parameters for therapeutic plans, such as movement range, repetition, and load.
Collapse
|
5
|
Deuschl G. Movement disorders rounds: Different types of tremor and myoclonus in an atypical case of shaking upon standing: Expert commentary. Parkinsonism Relat Disord 2023; 111:105391. [PMID: 37045677 DOI: 10.1016/j.parkreldis.2023.105391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Günther Deuschl
- Department of Neurology, UKSH, Christian-Albrechts-University Kiel, Rosalind-Fraenklinstr. 10, 24105, Kiel, Germany.
| |
Collapse
|
6
|
Abstract
Spasticity is characterized by an enhanced size and reduced threshold for activation of stretch reflexes and is associated with "positive signs" such as clonus and spasms, as well as "negative features" such as paresis and a loss of automatic postural responses. Spasticity develops over time after a lesion and can be associated with reduced speed of movement, cocontraction, abnormal synergies, and pain. Spasticity is caused by a combination of damage to descending tracts, reductions in inhibitory activity within spinal cord circuits, and adaptive changes within motoneurons. Increased tone, hypertonia, can also be caused by changes in passive stiffness due to, for example, increase in connective tissue and reduction in muscle fascicle length. Understanding the cause of hypertonia is important for determining the management strategy as nonneural, passive causes of stiffness will be more amenable to physical rather than pharmacological interventions. The management of spasticity is determined by the views and goals of the patient, family, and carers, which should be integral to the multidisciplinary assessment. An assessment, and treatment, of trigger factors such as infection and skin breakdown should be made especially in people with a recent change in tone. The choice of management strategies for an individual will vary depending on the severity of spasticity, the distribution of spasticity (i.e., whether it affects multiple muscle groups or is more prominent in one or two groups), the type of lesion, and the potential for recovery. Management options include physical therapy, oral agents; focal therapies such as botulinum injections; and peripheral nerve blocks. Intrathecal baclofen can lead to a reduction in required oral antispasticity medications. When spasticity is severe intrathecal phenol may be an option. Surgical interventions, largely used in the pediatric population, include muscle transfers and lengthening and selective dorsal root rhizotomy.
Collapse
Affiliation(s)
- Jonathan Marsden
- School of Health Professions, Faculty of Health, University of Plymouth, Plymouth, United Kingdom.
| | - Valerie Stevenson
- Department of Therapies and Rehabilitation, National Hospital for Neurology and Neurosurgery UCLH, London, United Kingdom
| | - Louise Jarrett
- Department of Neurology, Royal Devon and Exeter Hospital, Exeter, United Kingdom
| |
Collapse
|
7
|
Thompson AK, Wolpaw JR. H-reflex conditioning during locomotion in people with spinal cord injury. J Physiol 2021; 599:2453-2469. [PMID: 31215646 PMCID: PMC7241089 DOI: 10.1113/jp278173] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/17/2019] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS In people or animals with incomplete spinal cord injury (SCI), changing a spinal reflex through an operant conditioning protocol can improve locomotion. All previous studies conditioned the reflex during steady-state maintenance of a specific posture. By contrast, the present study down-conditioned the reflex during the swing-phase of locomotion in people with hyperreflexia as a result of chronic incomplete SCI. The aim was to modify the functioning of the reflex in a specific phase of a dynamic movement. This novel swing-phase conditioning protocol decreased the reflex much faster and farther than did the steady-state protocol in people or animals with or without SCI, and it also improved locomotion. The reflex decrease persisted for at least 6 months after conditioning ended. The results suggest that conditioning reflex function in a specific phase of a dynamic movement offers a new approach to enhancing and/or accelerating recovery after SCI or in other disorders. ABSTRACT In animals and people with incomplete spinal cord injury, appropriate operant conditioning of a spinal reflex can improve impaired locomotion. In all previous conditioning studies, the reflex was conditioned during steady-state maintenance of a stable posture; this steady-state protocol aimed to change the excitability of the targeted reflex pathway; reflex size gradually changed over 8-10 weeks. The present study introduces a new protocol, comprising a dynamic protocol that aims to change the functioning of the reflex pathway during a specific phase of a complex movement. Specifically, we down-conditioned the soleus H-reflex during the swing-phase of locomotion in people with hyperreflexia as a result of chronic incomplete SCI. The swing-phase H-reflex, which is absent or very small in neurologically normal individuals, is abnormally large in this patient population. The results were clear. With swing-phase down-conditioning, the H-reflex decreased much faster and farther than did the H-reflex in all previous animal or human studies with the steady-state protocol, and the decrease persisted for at least 6 months after conditioning ended. The H-reflex decrease was accompanied by improvements in walking speed and in the modulation of locomotor electromyograph activity in proximal and distal muscles of both legs. These results provide new insight into the factors controlling spinal reflex conditioning; they suggest that the conditioning protocols targeting reflex function in a specific movement phase provide a promising new opportunity to enhance functional recovery after SCI or in other disorders.
Collapse
Affiliation(s)
- Aiko K. Thompson
- College of Health ProfessionsMedical University of South CarolinaCharlestonSCUSA
| | - Jonathan R. Wolpaw
- Wadsworth CenterNYS Department of HealthAlbanyNYUSA
- Department of NeurologyStratton VA Medical CenterAlbanyNYUSA
- Department of Biomedical SciencesState University of New YorkAlbanyNYUSA
| |
Collapse
|
8
|
Lumley L, Du F, Marrero-Rosado B, Stone M, Keith ZM, Schultz C, Whitten K, Walker K, Acon-Chen C, Wright L, Shih TM. Soman-induced toxicity, cholinesterase inhibition and neuropathology in adult male Göttingen minipigs. Toxicol Rep 2021; 8:896-907. [PMID: 33996503 PMCID: PMC8095108 DOI: 10.1016/j.toxrep.2021.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 01/05/2023] Open
Abstract
Animal models are essential for evaluating the toxicity of chemical warfare nerve agents (CWNAs) to extrapolate to human risk and are necessary to evaluate the efficacy of medical countermeasures. The Göttingen minipig is increasingly used for toxicological studies because it has anatomical and physiological characteristics that are similar to those of humans. Our objective was to determine whether the minipig would be a useful large animal model to evaluate the toxic effects of soman (GD). We determined the intramuscular (IM) median lethal dose (LD50) of GD in adult male Göttingen minipigs using an up-and-down dosing method. In addition to lethality estimates, we characterized the observable signs of toxicity, blood and tissue cholinesterase (ChE) activity and brain pathology following GD exposure. The 24 h LD50 of GD was estimated to be 4.7 μg/kg, with 95 % confidence limits of 3.6 and 6.3 μg/kg. As anticipated, GD inhibited ChE activity in blood and several tissues. Neurohistopathological analysis showed neurodegeneration and neuroinflammation in survivors exposed to 4.7 μg/kg of GD, including in the primary visual cortex and various thalamic nuclei. These findings suggest that the minipig will be a useful large animal model for assessing drugs to mitigate neuropathological effects of exposure to CWNAs.
Collapse
Affiliation(s)
- Lucille Lumley
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Fu Du
- FD NeuroTechnologies, Inc., Columbia, MD, United States
| | - Brenda Marrero-Rosado
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Michael Stone
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Zora-Maya Keith
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Caroline Schultz
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Kimberly Whitten
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Katie Walker
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Cindy Acon-Chen
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Linnzi Wright
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, MD, United States
| | - Tsung-Ming Shih
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| |
Collapse
|
9
|
Hofstoetter US, Freundl B, Lackner P, Binder H. Transcutaneous Spinal Cord Stimulation Enhances Walking Performance and Reduces Spasticity in Individuals with Multiple Sclerosis. Brain Sci 2021; 11:brainsci11040472. [PMID: 33917893 PMCID: PMC8068213 DOI: 10.3390/brainsci11040472] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Gait dysfunction and spasticity are common debilitating consequences of multiple sclerosis (MS). Improvements of these motor impairments by lumbar transcutaneous spinal cord stimulation (tSCS) have been demonstrated in spinal cord injury. Here, we explored for the first time the motor effects of lumbar tSCS applied at 50 Hz for 30 min in 16 individuals with MS and investigated their temporal persistence post-intervention. We used a comprehensive protocol assessing walking ability, different presentations of spasticity, standing ability, manual dexterity, and trunk control. Walking ability, including walking speed and endurance, was significantly improved for two hours beyond the intervention and returned to baseline after 24 h. Muscle spasms, clonus duration, and exaggerated stretch reflexes were reduced for two hours, and clinically assessed lower-extremity muscle hypertonia remained at improved levels for 24 h post-intervention. Further, postural sway during normal standing with eyes open was decreased for two hours. No changes were detected in manual dexterity and trunk control. Our results suggest that transcutaneous lumbar SCS can serve as a clinically accessible method without known side effects that holds the potential for substantial clinical benefit across the disability spectrum of MS.
Collapse
Affiliation(s)
- Ursula S. Hofstoetter
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence:
| | - Brigitta Freundl
- Neurological Center, Klinik Penzing—Wiener Gesundheitsverbund, 1140 Vienna, Austria; (B.F.); (P.L.); (H.B.)
| | - Peter Lackner
- Neurological Center, Klinik Penzing—Wiener Gesundheitsverbund, 1140 Vienna, Austria; (B.F.); (P.L.); (H.B.)
| | - Heinrich Binder
- Neurological Center, Klinik Penzing—Wiener Gesundheitsverbund, 1140 Vienna, Austria; (B.F.); (P.L.); (H.B.)
| |
Collapse
|
10
|
Pei Y, Han T, Zallek CM, Liu T, Yang L, Hsiao-Wecksler ET. Design and Clinical Validation of a Robotic Ankle-Foot Simulator With Series Elastic Actuator for Ankle Clonus Assessment Training. IEEE Robot Autom Lett 2021. [DOI: 10.1109/lra.2021.3065242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
De Beukelaer N, Bar-On L, Hanssen B, Peeters N, Prinsen S, Ortibus E, Desloovere K, Van Campenhout A. Muscle Characteristics in Pediatric Hereditary Spastic Paraplegia vs. Bilateral Spastic Cerebral Palsy: An Exploratory Study. Front Neurol 2021; 12:635032. [PMID: 33716937 PMCID: PMC7952873 DOI: 10.3389/fneur.2021.635032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/26/2021] [Indexed: 01/14/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) is a neurological, genetic disorder that predominantly presents with lower limb spasticity and muscle weakness. Pediatric pure HSP types with infancy or childhood symptom onset resemble in clinical presentation to children with bilateral spastic cerebral palsy (SCP). Hence, treatment approaches in these patient groups are analogous. Altered muscle characteristics, including reduced medial gastrocnemius (MG) muscle growth and hyperreflexia have been quantified in children with SCP, using 3D-freehand ultrasound (3DfUS) and instrumented assessments of hyperreflexia, respectively. However, these muscle data have not yet been studied in children with HSP. Therefore, we aimed to explore these MG muscle characteristics in HSP and to test the hypothesis that these data differ from those of children with SCP and typically developing (TD) children. A total of 41 children were retrospectively enrolled including (1) nine children with HSP (ages of 9–17 years with gross motor function levels I and II), (2) 17 age-and severity-matched SCP children, and (3) 15 age-matched typically developing children (TD). Clinically, children with HSP showed significantly increased presence and severity of ankle clonus compared with SCP (p = 0.009). Compared with TD, both HSP and SCP had significantly smaller MG muscle volume normalized to body mass (p ≤ 0.001). Hyperreflexia did not significantly differ between the HSP and SCP group. In addition to the observed pathological muscle activity for both the low-velocity and the change in high-velocity and low-velocity stretches in the two groups, children with HSP tended to present higher muscle activity in response to increased stretch velocity compared with those with SCP. This exploratory study is the first to reveal MG muscle volume deficits in children with HSP. Moreover, high-velocity-dependent hyperreflexia and ankle clonus is observed in children with HSP. Instrumented impairment assessments suggested similar altered MG muscle characteristics in pure HSP type with pediatric onset compared to bilateral SCP. This finding needs to be confirmed in larger sample sizes. Hence, the study results might indicate analogous treatment approaches in these two patient groups.
Collapse
Affiliation(s)
- Nathalie De Beukelaer
- KU Leuven Department of Rehabilitation Sciences, Leuven, Belgium.,Clinical Motion Analysis Laboratory, University Hospitals Leuven, Leuven, Belgium
| | - Lynn Bar-On
- Department of Rehabilitation Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Britta Hanssen
- KU Leuven Department of Rehabilitation Sciences, Leuven, Belgium.,Clinical Motion Analysis Laboratory, University Hospitals Leuven, Leuven, Belgium
| | - Nicky Peeters
- KU Leuven Department of Rehabilitation Sciences, Leuven, Belgium.,Clinical Motion Analysis Laboratory, University Hospitals Leuven, Leuven, Belgium
| | - Sandra Prinsen
- Department of Orthopedics, University Hospitals Leuven, Leuven, Belgium
| | - Els Ortibus
- KU Leuven Department of Development and Regeneration, Leuven, Belgium
| | - Kaat Desloovere
- KU Leuven Department of Rehabilitation Sciences, Leuven, Belgium.,Clinical Motion Analysis Laboratory, University Hospitals Leuven, Leuven, Belgium
| | - Anja Van Campenhout
- KU Leuven Department of Rehabilitation Sciences, Leuven, Belgium.,Department of Orthopedics, University Hospitals Leuven, Leuven, Belgium.,KU Leuven Department of Development and Regeneration, Leuven, Belgium
| |
Collapse
|
12
|
Bilgin S, Carlak HF, Polat Ö, Nüzket T, Uslu S, Uysal H. Mathematical model of patella T-reflex and clinical evaluation with Ashworth scales. BIOMED ENG-BIOMED TE 2020; 65:587-594. [PMID: 32549130 DOI: 10.1515/bmt-2019-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 01/31/2020] [Indexed: 11/15/2022]
Abstract
Spasticity is one of the major problems that arise in different neurological diseases and seriously affect the quality of human life. Research on the understanding of mechanism of spasticity remains as important as the studies on the spasticity therapy and rehabilitation. In this study, the spasticity mechanism which develops concerning the upper motor neuron lesions is investigated by modelling "Patella tendon reflex triggered patella pendulum". The mathematical model based on the pendulum phenomenon is developed by solving the curve-fitting problem as finding the curve that best fits a set of data points. Electrophysiological and dynamic measurement data were taken from 76 spastic subjects and 20 healthy participants. The mathematical model is determined by the morphological properties of the goniometric variations. The results denote that the mathematical model containing two clinically relevant parameters -frequency component of the damped oscillatory motion defined as "f 0 " with the maximum angle of the reflex defined as "a 0 " ensures to distinguish spasticity from healthy subjects.
Collapse
Affiliation(s)
- Süleyman Bilgin
- Department of Electrical & Electronics Engineering, Faculty of Engineering, Akdeniz University, Antalya, 07058, Turkey
| | - Hamza Feza Carlak
- Department of Electrical & Electronics Engineering, Faculty of Engineering, Akdeniz University, Antalya, 07058, Turkey
| | - Övünç Polat
- Department of Electrical & Electronics Engineering, Faculty of Engineering, Akdeniz University, Antalya, 07058, Turkey
| | - Tunca Nüzket
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Serkan Uslu
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Hilmi Uysal
- Department of Neurology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
13
|
Snyder DB, Beardsley SA, Schmit BD. Role of the cortex in visuomotor control of arm stability. J Neurophysiol 2019; 122:2156-2172. [PMID: 31553682 DOI: 10.1152/jn.00003.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whereas numerous motor control theories describe the control of arm trajectory during reach, the control of stabilization in a constant arm position (i.e., visuomotor control of arm posture) is less clear. Three potential mechanisms have been proposed for visuomotor control of arm posture: 1) increased impedance of the arm through co-contraction of antagonistic muscles, 2) corrective muscle activity via spinal/supraspinal reflex circuits, and/or 3) intermittent voluntary corrections to errors in position. We examined the cortical mechanisms of visuomotor control of arm posture and tested the hypothesis that cortical error networks contribute to arm stabilization. We collected electroencephalography (EEG) data from 10 young healthy participants across four experimental planar movement tasks. We examined brain activity associated with intermittent voluntary corrections of position error and antagonist co-contraction during stabilization. EEG beta-band (13-26 Hz) power fluctuations were used as indicators of brain activity, and coherence between EEG electrodes was used as a measure of functional connectivity between brain regions. Cortical activity in the sensory, motor, and visual areas during arm stabilization was similar to activity during volitional arm movements and was larger than activity during co-contraction of the arm. However, cortical connectivity between the sensorimotor and visual regions was higher during arm stabilization compared with volitional arm movements and co-contraction of the arm. The difference in cortical activity and connectivity between tasks might be attributed to an underlying visuomotor error network used to update motor commands for visuomotor control of arm posture.NEW & NOTEWORTHY We examined cortical activity and connectivity during control of stabilization in a constant arm position (i.e., visuomotor control of arm posture). Our findings provide evidence for cortical involvement during control of stabilization in a constant arm position. A visuomotor error network appears to be active and may update motor commands for visuomotor control of arm posture.
Collapse
Affiliation(s)
- Dylan B Snyder
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Scott A Beardsley
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
14
|
Kim Y, Bulea TC, Park HS. Transcutaneous high-frequency alternating current for rapid reversible muscle force reduction below pain threshold. J Neural Eng 2019; 16:066013. [PMID: 31344687 DOI: 10.1088/1741-2552/ab35ce] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The development of non-invasive, quickly reversible techniques for controlling undesired muscle force production (e.g. spasticity) could expand rehabilitation approaches in those with pathology by increasing the type and intensity of exercises that can be performed. High-frequency alternating current (HFAC) has been previously established as a viable method for blocking neural conduction in peripheral nerves. However, clinical application of HFAC for nerve conduction block is limited due to the invasiveness of surgical procedures and the painful onset response. This study aimed to examine the use of transcutaneous HFAC (tHFAC) at various stimulation frequencies to address these shortfalls. APPROACH Ten individuals participated in the study. Surface electrodes were utilized to apply tHFAC (0.5-12 kHz) to the median and ulnar nerves. Individual pain threshold was determined by gradual increase of stimulation amplitude. Subjects then performed a force-matching task by producing grip forces up to the maximal voluntary contraction level with and without application of tHFAC below the pain threshold. MAIN RESULTS Pain threshold current amplitude increased linearly with stimulation frequency. Statistical analysis showed that both stimulation frequency and charge injected per phase had significant effects (p < 0.05) on grip force reduction. At the group level, application of tHFAC below pain threshold reduced grip force by a maximum of 40.7% ± 8.1%. Baseline grip force trials interspersed between tHFAC trials showed consistent grip force, indicating that fatigue was not a factor in force reduction. SIGNIFICANCE Our results demonstrate the effectiveness of tHFAC at reducing muscle force when applied below the pain threshold, suggesting its potential clinical viability. Future studies are necessary to further elucidate the mechanism of force reduction before clinical application.
Collapse
Affiliation(s)
- Yushin Kim
- Major of Sports Health Rehabilitation, Cheongju University, Cheongju, Republic of Korea
| | | | | |
Collapse
|
15
|
Modulation of soleus stretch reflexes during walking in people with chronic incomplete spinal cord injury. Exp Brain Res 2019; 237:2461-2479. [PMID: 31309252 PMCID: PMC6751142 DOI: 10.1007/s00221-019-05603-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/08/2019] [Indexed: 12/28/2022]
Abstract
In people with spasticity due to chronic incomplete spinal cord injury (SCI), it has been presumed that the abnormal stretch reflex activity impairs gait. However, locomotor stretch reflexes across all phases of walking have not been investigated in people with SCI. Thus, to understand modulation of stretch reflex excitability during spastic gait, we investigated soleus stretch reflexes across the entire gait cycle in nine neurologically normal participants and nine participants with spasticity due to chronic incomplete SCI (2.5–11 year post-injury). While the participant walked on the treadmill at his/her preferred speed, unexpected ankle dorsiflexion perturbations (6° at 250°/s) were imposed every 4–6 steps. The soleus H-reflex was also examined. In participants without SCI, spinal short-latency “M1”, spinal medium latency “M2”, and long-latency “M3” were clearly modulated throughout the step cycle; the responses were largest in the mid-stance and almost completely suppressed during the stance-swing transition and swing phases. In participants with SCI, M1 and M2 were abnormally large in the mid–late-swing phase, while M3 modulation was similar to that in participants without SCI. The H-reflex was also large in the mid–late-swing phase. Elicitation of H-reflex and stretch reflexes in the late swing often triggered clonus and affected the soleus activity in the following stance. In individuals without SCI, moderate positive correlation was found between H-reflex and stretch reflex sizes across the step cycle, whereas in participants with SCI, such correlation was weak to non-existing, suggesting that H-reflex investigation would not substitute for stretch reflex investigation in individuals after SCI.
Collapse
|
16
|
Aguiar SA, Baker SN, Gant K, Bohorquez J, Thomas CK. Spasms after spinal cord injury show low-frequency intermuscular coherence. J Neurophysiol 2018; 120:1765-1771. [PMID: 30067124 PMCID: PMC6230810 DOI: 10.1152/jn.00112.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intermuscular coherence allows the investigation of common input to muscle groups. Although beta-band (15–30 Hz) intermuscular coherence is well understood as originating from the cortex, the source of intermuscular coherence at lower frequencies is still unclear. We used a wearable device that recorded electromyographic (EMG) signals during a 24-h period in four lower limb muscles of seven spinal cord injury patients (American Spinal Cord Injury Association impairment scale: A, 6 subjects; B, 1 subject) while they went about their normal daily life activities. We detected natural spasms occurring during these long-lasting recordings and calculated intermuscular coherence between all six possible combinations of muscle pairs. There was significant intermuscular coherence at low frequencies, between 2 and 13 Hz. The most likely source for this was the spinal cord and its peripheral feedback loops, because the spinal lesions in these patients had interrupted connections to supraspinal structures. This is the first report to demonstrate that the spinal cord is capable of producing low-frequency intermuscular coherence with severely reduced or abolished descending drive. NEW & NOTEWORTHY This is the first report to demonstrate that intermuscular coherence between lower limb muscles at low frequencies can be produced by the spinal cord with severely reduced or abolished descending drive.
Collapse
Affiliation(s)
- Stefane A Aguiar
- Institute of Neuroscience, Newcastle University , Newcastle Upon Tyne , United Kingdom
| | - Stuart N Baker
- Institute of Neuroscience, Newcastle University , Newcastle Upon Tyne , United Kingdom
| | - Katie Gant
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida
| | - Jorge Bohorquez
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida.,Department of Biomedical Engineering, University of Miami Miller School of Medicine , Miami, Florida
| | - Christine K Thomas
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida.,Department of Neurological Surgery, University of Miami Miller School of Medicine , Miami, Florida.,Department of Physiology and Biophysics, University of Miami Miller School of Medicine , Miami, Florida
| |
Collapse
|
17
|
Wang R, Gäverth J, Herman PA. Changes in the Neural and Non-neural Related Properties of the Spastic Wrist Flexors After Treatment With Botulinum Toxin A in Post-stroke Subjects: An Optimization Study. Front Bioeng Biotechnol 2018; 6:73. [PMID: 29963551 PMCID: PMC6013585 DOI: 10.3389/fbioe.2018.00073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/22/2018] [Indexed: 11/13/2022] Open
Abstract
Quantifying neural and non-neural contributions to the joint resistance in spasticity is essential for a better evaluation of different intervention strategies such as botulinum toxin A (BoTN-A). However, direct measurement of muscle mechanical properties and spasticity-related parameters in humans is extremely challenging. The aim of this study was to use a previously developed musculoskeletal model and optimization scheme to evaluate the changes of neural and non-neural related properties of the spastic wrist flexors during passive wrist extension after BoTN-A injection. Data of joint angle and resistant torque were collected from 21 chronic stroke patients before, and 4 and 12 weeks post BoTN-A injection using NeuroFlexor, which is a motorized force measurement device to passively stretch wrist flexors. The model was optimized by tuning the passive and stretch-related parameters to fit the measured torque in each participant. It was found that stroke survivors exhibited decreased neural components at 4 weeks post BoNT-A injection, which returned to baseline levels after 12 weeks. The decreased neural component was mainly due to the increased motoneuron pool threshold, which is interpreted as a net excitatory and inhibitory inputs to the motoneuron pool. Though the linear stiffness and viscosity properties of wrist flexors were similar before and after treatment, increased exponential stiffness was observed over time which may indicate a decreased range of motion of the wrist joint. Using a combination of modeling and experimental measurement, valuable insights into the treatment responses, i.e., transmission of motoneurons, are provided by investigating potential parameter changes along the stretch reflex pathway in persons with chronic stroke.
Collapse
Affiliation(s)
- Ruoli Wang
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Mechanics, Royal Institute of Technology, Stockholm, Sweden.,KTH Biomex Center, Royal Institute of Technology, Stockholm, Sweden
| | - Johan Gäverth
- Functional Area Occupational Therapy & Physiotherapy, Karolinska University Hospital, Stockholm, Sweden
| | - Pawel A Herman
- Department of Computational Science and Technology, Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
18
|
A novel sensor-based assessment of lower limb spasticity in children with cerebral palsy. J Neuroeng Rehabil 2018; 15:45. [PMID: 29866177 PMCID: PMC5987429 DOI: 10.1186/s12984-018-0388-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 05/14/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND To provide effective interventions for spasticity, accurate and reliable spasticity assessment is essential. For the assessment, the Modified Tardieu Scale (MTS) has been widely used owing to its simplicity and convenience. However, it has poor or moderate accuracy and reliability. METHODS We proposed a novel inertial measurement unit (IMU)-based MTS assessment system to improve the accuracy and reliability of the MTS itself. The proposed system consists of a joint angle calculation algorithm, a function to detect abnormal muscle reaction (a catch and clonus), and a visual biofeedback mechanism. Through spastic knee and ankle joint assessment, the proposed IMU-based MTS assessment system was compared with the conventional MTS assessment system in 28 children with cerebral palsy by two raters. RESULTS The results showed that the proposed system has good accuracy (root mean square error < 3.2°) and test-retest and inter-rater reliabilities (ICC > 0.8), while the conventional MTS system has poor or moderate reliability. Moreover, we found that the deteriorated reliability of the conventional MTS system comes from its goniometric measurement as well as from irregular passive stretch velocity. CONCLUSIONS The proposed system, which is clinically relevant, can significantly improve the accuracy and reliability of the MTS in lower limbs for children with cerebral palsy.
Collapse
|
19
|
Wang R, Herman P, Ekeberg Ö, Gäverth J, Fagergren A, Forssberg H. Neural and non-neural related properties in the spastic wrist flexors: An optimization study. Med Eng Phys 2017; 47:198-209. [PMID: 28694106 DOI: 10.1016/j.medengphy.2017.06.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 06/14/2017] [Accepted: 06/14/2017] [Indexed: 10/19/2022]
Abstract
Quantifying neural and non-neural contributions to increased joint resistance in spasticity is essential for a better understanding of its pathophysiological mechanisms and evaluating different intervention strategies. However, direct measurement of spasticity-related manifestations, e.g., motoneuron and biophysical properties in humans, is extremely challenging. In this vein, we developed a forward neuromusculoskeletal model that accounts for dynamics of muscle spindles, motoneuron pools, muscle activation and musculotendon of wrist flexors and relies on the joint angle and resistant torque as the only input measurement variables. By modeling the stretch reflex pathway, neural and non-neural related properties of the spastic wrist flexors were estimated during the wrist extension test. Joint angle and resistant torque were collected from 17 persons with chronic stroke and healthy controls using NeuroFlexor, a motorized force measurement device during the passive wrist extension test. The model was optimized by tuning the passive and stretch reflex-related parameters to fit the measured torque in each participant. We found that persons with moderate and severe spasticity had significantly higher stiffness than controls. Among subgroups of stroke survivors, the increased neural component was mainly due to a lower muscle spindle rate at 50% of the motoneuron recruitment. The motoneuron pool threshold was highly correlated to the motoneuron pool gain in all subgroups. The model can describe the overall resistant behavior of the wrist joint during the test. Compared to controls, increased resistance was predominantly due to higher elasticity and neural components. We concluded that in combination with the NeuroFlexor measurement, the proposed neuromusculoskeletal model and optimization scheme served as suitable tools for investigating potential parameter changes along the stretch-reflex pathway in persons with spasticity.
Collapse
Affiliation(s)
- R Wang
- Department of Mechanics, Royal Institute of Technology, Stockholm, Sweden; KTH Biomex Center, Royal Institute of Technology, Stockholm, Sweden; Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
| | - P Herman
- Dept. of Computational Science and Technology, Royal Institute of Technology, Stockholm, Sweden.
| | - Ö Ekeberg
- Dept. of Computational Science and Technology, Royal Institute of Technology, Stockholm, Sweden.
| | - J Gäverth
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
| | | | - H Forssberg
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
20
|
Hagen DA, Valero-Cuevas FJ. Similar movements are associated with drastically different muscle contraction velocities. J Biomech 2017; 59:90-100. [PMID: 28619447 DOI: 10.1016/j.jbiomech.2017.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/20/2017] [Accepted: 05/23/2017] [Indexed: 11/28/2022]
Abstract
We investigated how kinematic redundancy interacts with the neurophysiological control mechanisms required for smooth and accurate, rapid limb movements. Biomechanically speaking, tendon excursions are over-determined because the rotation of few joints determines the lengths and velocities of many muscles. But how different are the muscle velocity profiles induced by various, equally valid hand trajectories? We used an 18-muscle sagittal-plane arm model to calculate 100,000 feasible shoulder, elbow, and wrist joint rotations that produced valid basketball free throws with different hand trajectories, but identical initial and final hand positions and velocities. We found large differences in the eccentric and concentric muscle velocity profiles across many trajectories; even among similar trajectories. These differences have important consequences to their neural control because each trajectory will require unique, time-sensitive reflex modulation strategies. As Sherrington mentioned a century ago, failure to appropriately silence the stretch reflex of any one eccentrically contracting muscle will disrupt movement. Thus, trajectories that produce faster or more variable eccentric contractions will require more precise timing of reflex modulation across motoneuron pools; resulting in higher sensitivity to time delays, muscle mechanics, excitation/contraction dynamics, noise, errors and perturbations. By combining fundamental concepts of biomechanics and neuroscience, we propose that kinematic and muscle redundancy are, in fact, severely limited by the need to regulate reflex mechanisms in a task-specific and time-critical way. This in turn has important consequences to the learning and execution of accurate, smooth and repeatable movements-and to the rehabilitation of everyday limb movements in developmental and neurological conditions, and stroke.
Collapse
Affiliation(s)
- Daniel A Hagen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Francisco J Valero-Cuevas
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA; Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
21
|
A Study of the Importance of Clonus Symptoms in Patients with Tramadol Poisoning. J Toxicol 2017; 2017:2151536. [PMID: 29158734 PMCID: PMC5660783 DOI: 10.1155/2017/2151536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/01/2017] [Accepted: 08/29/2017] [Indexed: 11/18/2022] Open
Abstract
Objectives. Clinical studies to reduce the side effects of tramadol, such as seizure, are necessary. Owing to the high prevalence of tramadol consumption and subsequent complications that result from seizures, the aim of the present study was to find a relationship between clonus and prediction of seizure outcome in patients with tramadol overdose. This can be used to determine the need for essential actions if a significant indicator of preventive medical measures is observed.Methods. In this case-control study, three groups of patients poisoned with tramadol and with marked ankle clonus were evaluated. A sample size of 50 patients per group was calculated using the Cohen first method. The data were analyzed using SPSS16 software.Results. All patients with ankle clonus were evaluated. Seizures occurred most commonly in patients aged 21–25 years or younger. The patients who received the preventive medication of magnesium sulfate were seizure-free for 72 h after admission.Conclusion. It is recommended that, for all patients referred with tramadol poisoning who have symptoms of ankle clonus, the administration of magnesium sulfate should be considered in addition to medication for the prevention of seizures and arrhythmias.
Collapse
|
22
|
Tonic Stretch Reflex Threshold as a Measure of Ankle Plantar-Flexor Spasticity After Stroke. Phys Ther 2016; 96:687-95. [PMID: 26450971 DOI: 10.2522/ptj.20140243] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/04/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND Commonly used spasticity scales assess the resistance felt by the evaluator during passive stretching. These scales, however, have questionable validity and reliability. The tonic stretch reflex threshold (TSRT), or the angle at which motoneuronal recruitment begins in the resting state, is a promising alternative for spasticity measurement. Previous studies showed that spasticity and voluntary motor deficits after stroke may be characterized by a limitation in the ability of the central nervous system to regulate the range of the TSRT. OBJECTIVE The study objective was to assess interevaluator reliability for TSRT plantar-flexor spasticity measurement. DESIGN This was an interevaluator reliability study. METHODS In 28 people after stroke, plantar-flexor spasticity was evaluated twice on the same day. Plantar-flexor muscles were stretched 20 times at different velocities assigned by a portable device. Plantar-flexor electromyographic signals and ankle angles were used to determine dynamic velocity-dependent thresholds. The TSRT was computed by extrapolating a regression line through dynamic velocity-dependent thresholds to the angular axis. RESULTS Mean TSRTs in evaluations 1 and 2 were 66.0 degrees (SD=13.1°) and 65.8 degrees (SD=14.1°), respectively, with no significant difference between them. The intraclass correlation coefficient (2,1) was .851 (95% confidence interval=.703, .928). LIMITATIONS The notion of dynamic stretch reflex threshold does not exclude the possibility that spasticity is dependent on acceleration, as well as on velocity; future work will study both possibilities. CONCLUSIONS Tonic stretch reflex threshold interevaluator reliability for evaluating stroke-related plantar-flexor spasticity was very good. The TSRT is a reliable measure of spasticity. More information may be gained by combining the TSRT measurement with a measure of velocity-dependent resistance.
Collapse
|
23
|
Sreenivasa M, Ayusawa K, Nakamura Y. Modeling and Identification of a Realistic Spiking Neural Network and Musculoskeletal Model of the Human Arm, and an Application to the Stretch Reflex. IEEE Trans Neural Syst Rehabil Eng 2015; 24:591-602. [PMID: 26394432 DOI: 10.1109/tnsre.2015.2478858] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study develops a multi-level neuromuscular model consisting of topological pools of spiking motor, sensory and interneurons controlling a bi-muscular model of the human arm. The spiking output of motor neuron pools were used to drive muscle actions and skeletal movement via neuromuscular junctions. Feedback information from muscle spindles were relayed via monosynaptic excitatory and disynaptic inhibitory connections, to simulate spinal afferent pathways. Subject-specific model parameters were identified from human experiments by using inverse dynamics computations and optimization methods. The identified neuromuscular model was used to simulate the biceps stretch reflex and the results were compared to an independent dataset. The proposed model was able to track the recorded data and produce dynamically consistent neural spiking patterns, muscle forces and movement kinematics under varying conditions of external forces and co-contraction levels. This additional layer of detail in neuromuscular models has important relevance to the research communities of rehabilitation and clinical movement analysis by providing a mathematical approach to studying neuromuscular pathology.
Collapse
|
24
|
Meskers CGM, de Groot JH, de Vlugt E, Schouten AC. NeuroControl of movement: system identification approach for clinical benefit. Front Integr Neurosci 2015; 9:48. [PMID: 26441563 PMCID: PMC4561669 DOI: 10.3389/fnint.2015.00048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 08/10/2015] [Indexed: 01/18/2023] Open
Abstract
Progress in diagnosis and treatment of movement disorders after neurological diseases like stroke, cerebral palsy (CP), dystonia and at old age requires understanding of the altered capacity to adequately respond to physical obstacles in the environment. With posture and movement disorders, the control of muscles is hampered, resulting in aberrant force generation and improper impedance regulation. Understanding of this improper regulation not only requires the understanding of the role of the neural controller, but also attention for: (1) the interaction between the neural controller and the "plant", comprising the biomechanical properties of the musculaskeletal system including the viscoelastic properties of the contractile (muscle) and non-contractile (connective) tissues: neuromechanics; and (2) the closed loop nature of neural controller and biomechanical system in which cause and effect interact and are hence difficult to separate. Properties of the neural controller and the biomechanical system need to be addressed synchronously by the combination of haptic robotics, (closed loop) system identification (SI), and neuro-mechanical modeling. In this paper, we argue that assessment of neuromechanics in response to well defined environmental conditions and tasks may provide for key parameters to understand posture and movement disorders in neurological diseases and for biomarkers to increase accuracy of prediction models for functional outcome and effects of intervention.
Collapse
Affiliation(s)
- Carel G. M. Meskers
- Department of Rehabilitation Medicine, VU University Medical CenterAmsterdam, Netherlands
| | - Jurriaan H. de Groot
- Department of Rehabilitation Medicine, Leiden University Medical CenterLeiden, Netherlands
| | - Erwin de Vlugt
- Department of Biomechanical Engineering, Delft University of TechnologyDelft, Netherlands
| | - Alfred C. Schouten
- Department of Biomechanical Engineering, Delft University of TechnologyDelft, Netherlands
- Laboratory of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine (MIRA), University of TwenteEnschede, Netherlands
| |
Collapse
|
25
|
Friedman JH, Mellion M. Jaw clonus frequency does not support hypothesis of peripheral mechanism of self-re-excitation. Int J Neurosci 2014; 125:947-8. [PMID: 25479321 DOI: 10.3109/00207454.2014.989322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Jaw clonus is an uncommon pathological reflex thought to indicate corticospinal tract dysfunction above the Vth cranial nerve. It is useful as a sign of upper motor neuron dysfunction above the spinal cord. One theory of self excitation posits an inverse and linear relationship between clonus frequency and the length of the reflex arc, to explain the higher frequency of clonus in the ankles than the wrist. Only two previous cases of jaw clonus have been published. One of these plus the present case suggest that an inverse and linear relationship is not correct.
Collapse
Affiliation(s)
- Joseph H Friedman
- a Director, Movement Disorders Program, Butler Hospital , Providence , RI , USA.,b Department of Neurology, Alpert Medical School of Brown University , Providence , RI , USA
| | - Michelle Mellion
- c Department of Neurology, Rhode Island Hospital, Alpert Medical School of Brown University , Providence , RI , USA
| |
Collapse
|
26
|
Thompson AK, Wolpaw JR. Restoring walking after spinal cord injury: operant conditioning of spinal reflexes can help. Neuroscientist 2014; 21:203-15. [PMID: 24636954 DOI: 10.1177/1073858414527541] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
People with incomplete spinal cord injury (SCI) frequently suffer motor disabilities due to spasticity and poor muscle control, even after conventional therapy. Abnormal spinal reflex activity often contributes to these problems. Operant conditioning of spinal reflexes, which can target plasticity to specific reflex pathways, can enhance recovery. In rats in which a right lateral column lesion had weakened right stance and produced an asymmetrical gait, up-conditioning of the right soleus H-reflex, which increased muscle spindle afferent excitation of soleus, strengthened right stance and eliminated the asymmetry. In people with hyperreflexia due to incomplete SCI, down-conditioning of the soleus H-reflex improved walking speed and symmetry. Furthermore, modulation of electromyographic activity during walking improved bilaterally, indicating that a protocol that targets plasticity to a specific pathway can trigger widespread plasticity that improves recovery far beyond that attributable to the change in the targeted pathway. These improvements were apparent to people in their daily lives. They reported walking faster and farther, and noted less spasticity and better balance. Operant conditioning protocols could be developed to modify other spinal reflexes or corticospinal connections; and could be combined with other therapies to enhance recovery in people with SCI or other neuromuscular disorders.
Collapse
Affiliation(s)
- Aiko K Thompson
- Helen Hayes Hospital, New York State Department of Health, West Haverstraw, NY, USA Wadsworth Center, New York State Department of Health, Albany, NY, USA Department of Neurology, Neurological Institute, Columbia University, New York, NY, USA Department of Biomedical Sciences, State University of New York, Albany, NY, USA
| | - Jonathan R Wolpaw
- Helen Hayes Hospital, New York State Department of Health, West Haverstraw, NY, USA Wadsworth Center, New York State Department of Health, Albany, NY, USA Department of Neurology, Neurological Institute, Columbia University, New York, NY, USA Department of Biomedical Sciences, State University of New York, Albany, NY, USA
| |
Collapse
|
27
|
Cutaneous inputs from the back abolish locomotor-like activity and reduce spastic-like activity in the adult cat following complete spinal cord injury. Exp Neurol 2012; 235:588-98. [PMID: 22487200 DOI: 10.1016/j.expneurol.2012.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/11/2012] [Accepted: 03/25/2012] [Indexed: 11/20/2022]
Abstract
Spasticity is a condition that can include increased muscle tone, clonus, spasms, and hyperreflexia. In this study, we report the effect of manually stimulating the dorsal lumbosacral skin on spontaneous locomotor-like activity and on a variety of reflex responses in 5 decerebrate chronic spinal cats treated with clonidine. Cats were spinalized 1 month before the terminal experiment. Stretch reflexes were evoked by stretching the left triceps surae muscles. Crossed reflexes were elicited by electrically stimulating the right tibial or superficial peroneal nerves. Wind-up of reflex responses was evoked by electrically stimulating the left tibial or superficial peroneal nerves. We found that pinching the skin of the back abolished spontaneous locomotor-like activity. We also found that back pinch abolished the rhythmic activity observed during reflex testing without eliminating the reflex responses. Some of the rhythmic episodes of activity observed during reflex testing were consistent with clonus with an oscillation frequency greater than 3 Hz. Pinching the skin of the back effectively abolished rhythmic activity occurring spontaneously or evoked during reflex testing, irrespective of oscillation frequency. The results are consistent with the hypothesis that locomotion and clonus are produced by common central pattern-generators. Stimulating the skin of the back could prove helpful in managing undesired rhythmic activity in spinal cord-injured humans.
Collapse
|
28
|
Dhindsa MS, Merring CA, Brandt LE, Tanaka H, Griffin L. Muscle spasticity associated with reduced whole-leg perfusion in persons with spinal cord injury. J Spinal Cord Med 2011; 34:594-9. [PMID: 22330115 PMCID: PMC3237286 DOI: 10.1179/2045772311y.0000000040] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVE To determine the association between peripheral blood flow and spasticity in individuals with spinal cord injury (SCI). DESIGN A cross-sectional study with measurements of muscle spasticity and whole-limb blood flow in individuals with SCI. SETTING University of Texas at Austin and Brain & Spine Recovery Center, Austin, TX, USA. PARTICIPANTS Eighteen individuals (14 males and 4 females) with SCI were classified into high (N = 7), low (N = 6), and no (N = 5) spasticity groups according to the spasticity levels determined by the modified Ashworth scale scores. INTERVENTIONS Whole-limb blood flow was measured in the femoral and brachial arteries using Doppler ultrasound and was normalized to lean limb mass obtained with dual-energy X-ray absorptiometry. OUTCOME MEASURES Limb blood flow and muscle spasticity. RESULTS Age, time post-SCI, and the American Spinal Injury Association impairment scale motor and sensory scores were not different among groups with different muscle spasticity. Femoral artery blood flow normalized to lean leg mass was different (P = 0.001) across the three spasticity groups (high 78.9 ± 16.7, low 98.3 ± 39.8, no 142.5 ± 24.3 ml/minute/kg). Total leg muscle spasticity scores were significantly and negatively correlated with femoral artery blood flow (r = -0.59, P < 0.01). There was no significant difference in brachial artery blood flow among the groups. CONCLUSIONS Whole-leg blood flow was lower in individuals with greater spasticity scores. These results suggest that a reduction in lower-limb perfusion may play a role, at least in part, in the pathogenesis leading to muscle spasticity after SCI.
Collapse
Affiliation(s)
- Mandeep S. Dhindsa
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX, USA
| | - Curtis A. Merring
- Brain & Spinal Recovery Center, University Medical Center at Brackenridge, Austin, TX, USA
| | - Lauren E. Brandt
- Brain & Spinal Recovery Center, University Medical Center at Brackenridge, Austin, TX, USA
| | - Hirofumi Tanaka
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX, USA
| | - Lisa Griffin
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX, USA,Correspondence to: Lisa Griffin, University of Texas at Austin, 1 University Station D3700, Austin, TX, USA 78712.
| |
Collapse
|
29
|
de Vlugt E, de Groot JH, Wisman WHJ, Meskers CGM. Clonus is explained from increased reflex gain and enlarged tissue viscoelasticity. J Biomech 2011; 45:148-55. [PMID: 22014329 DOI: 10.1016/j.jbiomech.2011.09.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 09/07/2011] [Accepted: 09/13/2011] [Indexed: 11/29/2022]
Abstract
Upper motor neuron diseases (UMND), such as stroke and spinal cord injury (SCI), are assumed to produce alterations in muscle tissue in association with neural damage. Distinguishing between these two factors is of clinical importance in choosing appropriate therapy. We studied the effect of changes in the gain of the Ia reflex pathway and tissue viscoelasticity on the emergence, frequency, and persistence of ankle clonus: a clinically significant, involuntary oscillatory movement disorder. Monte Carlo simulations were performed to explain our experimental observations in patients with stroke (n = 3) and SCI (n = 4) using a nonlinear antagonistic muscle model of the human ankle joint. Ia reflex gain was varied by changing motor unit pool threshold and gain, and passive tissue viscosity and elasticity were varied by changing optimal muscle length. Tissue viscoelasticity appeared to have a strong effect on the emergence and persistence of clonus. Observed frequencies of ankle movement, prior to and after the experimental intervention of a sudden damper, was predicted by the model. The simulations revealed that reflex gains were largest in patients with the largest tissue viscoelasticity. We conclude that ankle clonus in stroke and SCI is the result of a combination of, and suggests a relation between, (i) a decrease in threshold and an increase in gain of the motor unit pool and (ii) a decrease in optimal muscle length.
Collapse
Affiliation(s)
- Erwin de Vlugt
- Department of Mechanical Engineering, Laboratory of Neuromuscular Control, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
| | | | | | | |
Collapse
|
30
|
Abstract
In the preceding series of articles, the history of vertebrate motoneuron and motor unit neurobiological studies has been discussed. In this article, we select a few examples of recent advances in neuroscience and discuss their application or potential application to the study of motoneurons and the control of movement. We conclude, like Sherrington, that in order to understand normal, traumatized, and diseased human behavior, it is critical to continue to study motoneuron biology using all available and emerging tools. This article is part of a Special Issue entitled Historical Review.
Collapse
Affiliation(s)
- Robert M Brownstone
- Departments of Surgery (Neurosurgery) and Anatomy & Neurobiology, Dalhousie University, Halifax, NS, Canada B3H 1X5.
| | | |
Collapse
|
31
|
Murillo N, Kumru H, Vidal-Samso J, Benito J, Medina J, Navarro X, Valls-Sole J. Decrease of spasticity with muscle vibration in patients with spinal cord injury. Clin Neurophysiol 2011; 122:1183-9. [DOI: 10.1016/j.clinph.2010.11.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 10/25/2010] [Accepted: 11/25/2010] [Indexed: 11/28/2022]
|
32
|
Uysal H, Boyraz I, Yağcıoğlu S, Oktay F, Kafalı P, Tönük E. Ankle clonus and its relationship with the medium-latency reflex response of the soleus by peroneal nerve stimulation. J Electromyogr Kinesiol 2010; 21:438-44. [PMID: 21145256 DOI: 10.1016/j.jelekin.2010.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 11/06/2010] [Accepted: 11/10/2010] [Indexed: 11/19/2022] Open
Abstract
Ankle clonus and soleus medium-latency reflex are stretch-induced responses. Clonus is traditionally considered to be the result of oscillation in the group Ia mediated spinal stretch reflex but the soleus medium-latency reflex response originates mainly from the activation of group II afferents. The medium latency reflex response (MLR) was recorded in soleus muscle by peroneal nerve stimulation and clonus beats were recorded in soleus muscle using EMG in 19 spastic patients. The dorsiflexion (DF) and plantarflexion (PF) times of clonus and the half-period were calculated based on accelerometric measurements in 11 patients. The MLR of the soleus was 73.63 ± 8.9 ms. The half-period of the clonus was 79.34 ± 12.31 ms. The difference between the MLR and half-period was significant. The PF was 71.75 ± 6.73 ms, and the DF was 88.63 ± 10.83 ms. The difference between the soleus MLR and PF part of the clonus beat was not significant. The PF part of the clonus beat is due to soleus muscle contraction and controlled by the neural part of the oscillation. There may be relationship between the soleus MLR and the PF part of the clonus. Clonus is considered to be the result of oscillations in the group Ia spinal stretch reflex, but there is sufficient time for group II afferents to be involved.
Collapse
Affiliation(s)
- Hilmi Uysal
- Akdeniz University Hospital, Neurology Department, Antalya, Turkey.
| | | | | | | | | | | |
Collapse
|
33
|
de Vlugt E, de Groot JH, Schenkeveld KE, Arendzen JH, van der Helm FCT, Meskers CGM. The relation between neuromechanical parameters and Ashworth score in stroke patients. J Neuroeng Rehabil 2010; 7:35. [PMID: 20663189 PMCID: PMC2927906 DOI: 10.1186/1743-0003-7-35] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 07/27/2010] [Indexed: 11/18/2022] Open
Abstract
Background Quantifying increased joint resistance into its contributing factors i.e. stiffness and viscosity ("hypertonia") and stretch reflexes ("hyperreflexia") is important in stroke rehabilitation. Existing clinical tests, such as the Ashworth Score, do not permit discrimination between underlying tissue and reflexive (neural) properties. We propose an instrumented identification paradigm for early and tailor made interventions. Methods Ramp-and-Hold ankle dorsiflexion rotations of various durations were imposed using a manipulator. A one second rotation over the Range of Motion similar to the Ashworth condition was included. Tissue stiffness and viscosity and reflexive torque were estimated using a nonlinear model and compared to the Ashworth Score of nineteen stroke patients and seven controls. Results Ankle viscosity moderately increased, stiffness was indifferent and reflexive torque decreased with movement duration. Compared to controls, patients with an Ashworth Score of 1 and 2+ were significantly stiffer and had higher viscosity and patients with an Ashworth Score of 2+ showed higher reflexive torque. For the one second movement, stiffness correlated to Ashworth Score (r2 = 0.51, F = 32.7, p < 0.001) with minor uncorrelated reflexive torque. Reflexive torque correlated to Ashworth Score at shorter movement durations (r2 = 0.25, F = 11, p = 0.002). Conclusion Stroke patients were distinguished from controls by tissue stiffness and viscosity and to a lesser extent by reflexive torque from the soleus muscle. These parameters were also sensitive to discriminate patients, clinically graded by the Ashworth Score. Movement duration affected viscosity and reflexive torque which are clinically relevant parameters. Full evaluation of pathological joint resistance therefore requires instrumented tests at various movement conditions.
Collapse
Affiliation(s)
- Erwin de Vlugt
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, Delft, The Netherlands.
| | | | | | | | | | | |
Collapse
|
34
|
Zhang D, Poignet P, Bo APL, Ang WT. Exploring Peripheral Mechanism of Tremor on Neuromusculoskeletal Model: A General Simulation Study. IEEE Trans Biomed Eng 2009; 56:2359-69. [DOI: 10.1109/tbme.2009.2023979] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Doheny EP, Lowery MM, O'Malley MJ, Fitzpatrick DP. The effect of elbow joint centre displacement on force generation and neural excitation. Med Biol Eng Comput 2009; 47:589-98. [PMID: 19399543 DOI: 10.1007/s11517-009-0488-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 04/05/2009] [Indexed: 11/27/2022]
Abstract
Joint centre displacement may occur following total elbow replacement due to aseptic loosening or surgical misalignment, and has been linked to implant failure. In this study, the effects of joint centre displacement were examined using a neuromusculoskeletal model of the elbow joint. Isometric contractions were simulated at a range of joint angles during elbow flexion and extension. Displacement of the joint centre affected the force-generating capacity about the joint, due to changes in both muscle lengths and moment arms. The magnitude and direction of the maximum joint reaction force were also altered, potentially contributing to aseptic loosening and compromising joint stability. The relationship between force generated and the level of neural excitation to the elbow flexor and extensor muscles was also affected, suggesting that altered neural control patterns could be required following joint centre displacement.
Collapse
|
36
|
Boyraz I, Oktay F, Celik C, Akyuz M, Uysal H. Effect of cold application and tizanidine on clonus: clinical and electrophysiological assessment. J Spinal Cord Med 2009; 32:132-9. [PMID: 19569460 PMCID: PMC2678284 DOI: 10.1080/10790268.2009.11760764] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND/OBJECTIVES Clonus is an involuntary rhythmic muscle contraction after sudden muscle stretch that occurs as a result of a lesion in the upper motor neurons. The real mechanism behind clonus remains obscure. The objective of this study was to investigate the effects of central-acting tizanidine treatment and peripheral extremity cooling on clonus. PARTICIPANTS Thirty-eight patients with upper motor neuron involvement and sustained clonus. METHODS The 38 patients were divided into 3 groups: cold group (n=19), tizanidine group (n=13), and patient control group (n=6). A separate group of 21 able-bodied volunteers served as controls for the cold group. The physiologic effects of cold application were measured in the able-bodied group and compared with the effects in the patients in the cold group. All participants were evaluated by clinical and electrophysiologic measurements. RESULTS Changes in clinical and electrophysiologic measurements in the cold group were statistically significant compared with those of the tizanidine and patient control groups. CONCLUSIONS Subsequent and long-term cold application induced prolonged inhibitory effects on clonus. Tizanidine had no significant effect on clonus. Suppression of clonus by cold highlights the importance of peripheral input in relation to central mechanisms.
Collapse
|
37
|
Ahmed MAS, Martinez A, Yee A, Cahill D, Besag FMC. Psychogenic and organic movement disorders in children. Dev Med Child Neurol 2008; 50:300-4. [PMID: 18312601 DOI: 10.1111/j.1469-8749.2008.02043.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report on 34 patients with abnormal body movements (AMs; 11 females, 23 males; mean age 10 y 1 mo, range 3 y 6 mo-15 y 11 mo). Twenty-three of the 34 patients had an organic movement disorder (OMD), five patients fulfilled the diagnostic criteria of documented psychogenic movement disorder (PMD), and six patients displayed probable or possible PMD. Diagnosis of children with OMD included essential tremor (n=7), Tourette syndrome (n=5), primary dystonia (n=2), chronic motor tics (n=2), viral cerebellar ataxia (n=2), drug-induced ataxia (n=1), thyrotoxicosis related tremor (n=1), autosomal inherited dystonia (n=1), poststreptococcal chorea (n=1), and benign head tremor (n=1). Consistent findings among patients with PMD included disappearance of AMs when the patients thought they were not being observed and satisfactory recovery from the AMs after psychotherapy or suggestion. Reduction of the movements when the patient was distracted and variability of AMs during full relaxation, sleep, and stress were reported among patients with both PMD and OMD.
Collapse
Affiliation(s)
- M A S Ahmed
- Paediatric Department, King George Hospital, Goodmayes, Ilford, Essex, UK.
| | | | | | | | | |
Collapse
|
38
|
Harkema SJ. Plasticity of interneuronal networks of the functionally isolated human spinal cord. BRAIN RESEARCH REVIEWS 2008; 57:255-64. [PMID: 18042493 PMCID: PMC2729454 DOI: 10.1016/j.brainresrev.2007.07.012] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 07/19/2007] [Indexed: 11/20/2022]
Abstract
The loss of walking after human spinal cord injury has been attributed to the dominance of supraspinal over spinal mechanisms. The evidence for central pattern generation in humans is limited due to the inability to conclusively isolate the circuitry from descending and afferent input. However, studying individuals following spinal cord injury with no detectable influence on spinal networks from supraspinal centers can provide insight to their interaction with afferent input. The focus of this article is on the interaction of sensory input with human spinal networks in the generation of locomotor patterns. The functionally isolated human spinal cord has the capacity to generate locomotor patterns with appropriate afferent input. Locomotor Training is a rehabilitative strategy that has evolved from animal and humans studies focused on the neural plasticity of the spinal cord and has been successful for many people with acute and chronic incomplete spinal cord injury. However, even those individuals with clinically complete spinal cord injury that generate appropriate locomotor patterns during stepping with assistance on a treadmill with body weight support cannot sustain overground walking. This suggests that although a significant control of locomotion can occur at the level of spinal interneuronal networks the level of sustainable excitability of these circuits is still compromised. Future studies should focus on approaches to increase the central state of excitability and may include neural repair strategies, pharmacological interventions or epidural stimulation in combination with Locomotor Training.
Collapse
Affiliation(s)
- Susan J Harkema
- The Brain Research Institute and Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
39
|
Doheny EP, Lowery MM, FitzPatrick DP, O'Malley MJ. A neuromusculoskeletal model of the elbow joint for pre-clinical testing of total elbow replacement. ACTA ACUST UNITED AC 2007; 2007:2400-3. [PMID: 18002477 DOI: 10.1109/iembs.2007.4352811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this study, the effect of changing the geometry of the elbow joint was examined using a neuromusculoskeletal model. The position of the center of the joint was altered in order to simulate aseptic loosing or misalignment of the humeral component of a total elbow replacement. The effect of this change on model parameters, including the muscle moment arm and maximum wrist force, was examined. An isometric contraction with increasing voluntary drive was then simulated for a range of joint center positions, and the resulting joint reaction forces, and the direction of the force vectors were monitored. A change in the maximum force, measured at the wrist (17% - elbow flexion, 28% - extension), and in joint reaction force (up to 145N) was observed when the position of the joint center was altered. In addition, slight changes (up to 4.45 degrees ) in the direction of the joint reaction force vector were also observed.
Collapse
Affiliation(s)
- Emer P Doheny
- School of Electrical, Electronic and Mechanical Engineering, University College Dublin.
| | | | | | | |
Collapse
|
40
|
Onushko T, Schmit BD. Reflex response to imposed bilateral hip oscillations in human spinal cord injury. J Neurophysiol 2007; 98:1849-61. [PMID: 17652410 DOI: 10.1152/jn.00461.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In human spinal cord injury (SCI), imposed unilateral hip movements trigger multijoint, coordinated reflexes that might incorporate interneuronal circuitry involved in normal motor control, such as neural pathways associated with the reflex control of locomotion. To further investigate the complexity of these hip-triggered reflexes, we measured the effects of kinematics of the contralateral hip on this type of spastic reflex activity in 11 chronic SCI subjects. A novel servomotor drive system was constructed to impose bilateral hip oscillations while the knees and ankles were held stationary in instrumented leg braces. Surface electromyograms (EMGs) and joint torques were recorded during the imposed hip oscillations. Tests were conducted at two different frequencies to test for velocity dependence of the reflexes and the following four paradigms were used to examine the effects of contralateral hip afferents on hip-triggered spastic reflexes: 1) bilateral alternating, 2) bilateral synchronous, 3) unilateral leg oscillation with the contralateral leg held stationary in hip extension, and 4) unilateral leg oscillation with the contralateral leg held stationary in hip flexion. The response to bilateral alternating movements resulted in a significantly larger reflex magnitude compared with the bilateral synchronous movements (P < 0.001). Unilateral leg perturbations yielded reflex patterns that were consistent with the reflex patterns observed during alternating and synchronous hip oscillations. These observations suggest that spastic reflex excitability is modulated through afferent input from the contralateral hip in a manner that is generally consistent with locomotion.
Collapse
Affiliation(s)
- Tanya Onushko
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI 53201-1881, USA
| | | |
Collapse
|
41
|
Wu M, Schmit BD. Spastic Reflexes Triggered by Ankle Load Release in Human Spinal Cord Injury. J Neurophysiol 2006; 96:2941-50. [PMID: 16855114 DOI: 10.1152/jn.00186.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The rapid decrease in firing of load-sensitive group Ib muscle afferents during unloading may be particularly important in triggering the swing phase of gait. However, it still remains unclear whether load-sensitive muscle afferents modulate reflex activity in human spinal cord injury (SCI), as suggested by studies in the cat. The right hip of 12 individuals with chronic SCI was subjected to ramp (60°/s) and hold (10 s) movements over a range from 40° flexion to 0–10°extension using a custom servomotor system. An ankle dorsiflexion load was imposed and released after the hip reached a targeted position using a custom-designed pneumatic motor system. Isometric joint torques of the hip and knee, reaction torque of the ankle, and surface electromyograms (EMGs) from eight muscles of the leg were recorded following the imposed hip movement and ankle load release. Reflexes, characterized by hip flexion torque, knee extension, and coactivation of ankle flexors and extensors, were triggered by ankle load release when the hip was in an extended position. The ankle load release was observed to enhance the reflexes triggered by hip extension itself, suggesting that ankle load afferents play an important role in spastic reflexes in human SCI and that the reflex pathways associated with ankle load afferents have important implications in the spinal reflex regulation of human movement. Such muscle behaviors emphasize the role of ankle load afferents and hip proprioceptors on locomotion. This knowledge may be especially helpful in the treatment of spasms and in identifying rehabilitation strategies for producing functional movements in human SCI.
Collapse
Affiliation(s)
- Ming Wu
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, 345 E. Superior Street, Room 1406, Chicago, IL 60611, USA.
| | | |
Collapse
|
42
|
Yaniv Y, Sivan R, Landesberg A. Stability, controllability, and observability of the "four state" model for the sarcomeric control of contraction. Ann Biomed Eng 2006; 34:778-89. [PMID: 16708267 DOI: 10.1007/s10439-006-9093-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2005] [Accepted: 02/17/2006] [Indexed: 11/27/2022]
Abstract
A model of the sarcomeric control of contraction at various loading conditions has to maintain three cardinal features: stability, controllability (where the output can be controlled by the input), and observability (where the output reflects the effects of all the state variables). The suggested model of the sarcomere couples calcium kinetics with cross-bridge (XB) cycling and comprises two feedback mechanisms: (i) the cooperativity, whereby the number of force-generating (strong) XBs determines calcium affinity, regulates XB recruitment, and (ii) the mechanical feedback, whereby shortening velocity determines XBs cycling rate, controls the XBs contractile efficiency. The sarcomere is described by a set of four first-order nonlinear differential equations, utilizing the Matlab's Simulink software. Small oscillatory input was imposed when the state variables trajectories reached a steady state. The linearized state-space representations of the model were calculated for various initial sarcomere lengths. The analysis of the state-space representation validates the controllability and observability of the model. The model has four poles: three at the left side of the complex plane and one integrating pole at the origin. Therefore, the system is marginally stable. The Laplace transform confirms that the state representation is minimal and is therefore observable and controllable. The extension of the model to a multi-sarcomere lattice was explored, and the effects of inhomogeneity and nonuniform activation were described.
Collapse
Affiliation(s)
- Yael Yaniv
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | | | | |
Collapse
|
43
|
Koo TKK, Mak AFT. A neuromusculoskeletal model to simulate the constant angular velocity elbow extension test of spasticity. Med Eng Phys 2006; 28:60-9. [PMID: 15908257 DOI: 10.1016/j.medengphy.2005.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 10/27/2004] [Accepted: 03/16/2005] [Indexed: 11/17/2022]
Abstract
We developed a neuromusculoskeletal model to simulate the stretch reflex torque induced during a constant angular velocity elbow extension by tuning a set of physiologically-based parameters. Our model extended past modeling efforts in the investigation of elbow spasticity by incorporating explicit musculotendon, muscle spindle, and motoneuron pool models in each prime elbow flexor. We analyzed the effects of changes in motoneuron pool and muscle spindle properties as well as muscle mechanical properties on the biomechanical behavior of the elbow joint observed during a constant angular velocity elbow extension. Results indicated that both motoneuron pool thresholds and gains could be substantially different among muscles. In addition, sensitivity analysis revealed that spindle static gain and motoneuron pool threshold were the most sensitive parameters that could affect the stretch reflex responses of the elbow flexors during a constant angular velocity elbow extension, followed by motoneuron pool gain, and spindle dynamic gain. It is hoped that the model will contribute to the understanding of the underlying mechanisms of spasticity after validation by more elaborate experiments, and will facilitate the future development of more specific treatment of spasticity.
Collapse
Affiliation(s)
- Terry K K Koo
- Jockey Club Rehabilitation Engineering Centre, The Hong Kong Polytechnic University, Hung Hom, Kwoloon, Hong Kong
| | | |
Collapse
|
44
|
Scholtes VAB, Becher JG, Beelen A, Lankhorst GJ. Clinical assessment of spasticity in children with cerebral palsy: a critical review of available instruments. Dev Med Child Neurol 2006; 48:64-73. [PMID: 16359597 DOI: 10.1017/s0012162206000132] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2005] [Indexed: 11/06/2022]
Abstract
This study reviews the instruments used for the clinical assessment of spasticity in children with cerebral palsy, and evaluates their compliance with the concept of spasticity, defined as a velocity-dependent increase in muscle tone to passive stretch. Searches were performed in Medline, Embase, and Cinahl, including the keywords 'spasticity', 'child', and 'cerebral palsy', to identify articles in which a clinical method to measure spasticity was reported. Thirteen clinical spasticity assessment instruments were identified and evaluated using predetermined criteria. This review consists of reports on the standardization applied for assessment at different velocities, testing posture, and quantification of spasticity. Results show that most instruments do not comply with the concept of spasticity; standardization of assessment method is often lacking, and scoring systems of most instruments are ambiguous. Only the Tardieu Scale complies with the concept of spasticity, but this instrument has a comprehensive and time-consuming clinical scoring system.
Collapse
Affiliation(s)
- Vanessa A B Scholtes
- Department of Rehabilitation Medicine, VU University Medical Centre, Amsterdam, the Netherlands.
| | | | | | | |
Collapse
|
45
|
Hasan Z. The Human Motor Control System's Response to Mechanical Perturbation: Should It, Can It and Does It Ensure Stability? J Mot Behav 2005; 37:484-93. [PMID: 16280319 DOI: 10.3200/jmbr.37.6.484-493] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
From among the diverse meanings of stability, the one the author adopts here is that the effects of a perturbation are opposed, and therefore small effects remain small. Except in linear systems, however, instability need not lead to unbounded motion and may actually be desirable when maneuverability is important. Moreover, properties of nerves, muscles, and tendons present serious challenges to stabilization. A review of observations from the motor control literature reveals that responses to perturbations in many common situations assist rather than resist the perturbation and are therefore presumably destabilizing. The observations encompass situations of position maintenance as well as impending or ongoing movement. The author proposes that the motor control system responds to a sudden perturbation by a pattern of muscle activity that mimics an accustomed voluntary movement, oblivious of stability considerations. What prevents runaway motion in the face of short-term instability appears to be voluntary intervention.
Collapse
Affiliation(s)
- Z Hasan
- Department of Movement Sciences, University of Illinois at Chicago, Mail Code 898, 1919 W. Taylor Street, Room 447, Chicago, IL 60612, USA.
| |
Collapse
|
46
|
Ewen A, Cox RG, Davies SA, Luntley JB, Rubin Y, Fick GH, Bart BB. The ankle clonus test is not a clinically useful measure of spinal cord integrity in children. Can J Anaesth 2005; 52:524-9. [PMID: 15872132 DOI: 10.1007/bf03016533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
PURPOSE Bilateral flexion-induced ankle clonus has been proposed as a test of spinal cord integrity during anesthesia for scoliosis surgery. The purpose of this study was to establish the reliability of this test in normal children emerging from volatile anesthesia. A secondary objective was to determine if there was a difference in the validity of this test with either sevoflurane or isoflurane anesthesia. METHODS In a randomized, prospective blinded clinical trial, 32 healthy children aged three to 13 yr, were randomized to receive either isoflurane (Group I, n = 15) or sevoflurane (Group S, n = 17) for maintenance of anesthesia during dental restorative surgery. During emergence, an observer, blinded to group allocation, recorded ankle clonus scores (number of beats to a maximum of 5 on each side) at 60-sec intervals until tracheal extubation. End-tidal anesthetic concentration was measured contemporaneously. RESULTS Non-sustained ankle clonus was elicited in a majority of children during emergence: 13 (87%) patients in Group I and 15 (88%) in Group S demonstrated at least non-sustained or unilateral clonus. However, bilateral sustained (> 5 beats.min(-1)) ankle clonus occurred in only four (27%) patients in Group I and four (24%) patients in Group S (P = 0.83). CONCLUSION We conclude that the specificity of the ankle clonus test is too low to be clinically useful as a measure of spinal cord integrity in children, both when isoflurane and sevoflurane are used as the primary anesthetic agent.
Collapse
Affiliation(s)
- Alastair Ewen
- Division of Pediatric Anesthesia, Alberta Children's Hospital at University of Calgary, 1820 Richmond Road SW, Calgary, Alberta T2T 5C7, Canada
| | | | | | | | | | | | | |
Collapse
|
47
|
Lan N, Li Y, Sun Y, Yang FS. Reflex regulation of antagonist muscles for control of joint equilibrium position. IEEE Trans Neural Syst Rehabil Eng 2005; 13:60-71. [PMID: 15813407 DOI: 10.1109/tnsre.2004.841882] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A systems model of spinal neuro-musculo-skeletal system (alpha - gamma model) is developed to investigate the plausible roles of spinal proprioceptive feedback in movement control. The model is composed of a joint, a pair of antagonist muscles, length and velocity feedback from muscle spindle, as well as spinal stretch reflex, reciprocal inhibition and recurrent inhibition of Renshaw cells. A descending command modulates the background activation of alpha motoneuron pools in combination with these reflex activities. A static gamma command controls the fusimotor contraction of the spindle. Simulation results reveal that the equilibrium joint angle is linearly correlated to the level of static gamma fusimotor activity of the spindle for a wide range of external loading conditions and reflex gains, suggesting that these spinal reflexes may contribute to regulate the equilibrium position of the joint. Sensitivity analysis further shows that reflex gains and other central commands alter the quasi-linear relation in regular fashions. The reciprocal inhibition gain changes the slope of the linear theta(eq) - gamma curve; and the descending alpha excitation, the stretch reflex gain, and the external load all shift the theta(eq) - gamma curve in parallel. These results imply that reflex gains and descending alpha commands may be coordinated to maintain a unique theta(eq) - gamma curve while providing the flexibility to counteract external loads, to execute a movement, or to regulate additional muscle variables. Dynamic simulation suggests that control of a class of movements can be achieved with a triphasic, alpha pulse and a continuous gamma signal. The model study supports the notion of a dual strategy for controlling trajectories via a feedforward alpha command and for regulating the final equilibrium positions via a feedback gamma command.
Collapse
Affiliation(s)
- Ning Lan
- Department of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA 90089, USA.
| | | | | | | |
Collapse
|
48
|
Benz EN, Hornby TG, Bode RK, Scheidt RA, Schmit BD. A physiologically based clinical measure for spastic reflexes in spinal cord injury. Arch Phys Med Rehabil 2005; 86:52-9. [PMID: 15640989 DOI: 10.1016/j.apmr.2004.01.033] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To test the validity of the Spinal Cord Assessment Tool for Spastic reflexes (SCATS), a clinical tool intended to rate spastic motor behavior after spinal cord injury (SCI). DESIGN By using correlational analyses, the SCATS was validated using concurrent measurements of kinematics and electromyograms and traditional assessments of spasms and spastic hypertonia. SETTING Research laboratory (kinematics and electromyography) and outpatient medical clinic (traditional measures of spastic hypertonia). PARTICIPANTS Eleven people with SCI were used for kinematic and electromyographic measurements. Seventeen people with SCI were used for comparison with other clinical scales. INTERVENTIONS Not applicable. Main outcome measures Kinematic and surface electromyographic measurements of the tested lower extremity were used to quantify magnitude and/or duration of motor behaviors, and the Penn Spasm Frequency Scale (PSFS) and the Ashworth Scale were used to measure spasm frequency and resistance to joint movement for the hip flexors, knee flexors, and ankle plantarflexors, respectively. Concurrently, the SCATS was used to assess the clonus response to an imposed ankle dorsiflexion, the flexion response to a stimulus to the foot, and the knee extensor activity in response to an imposed leg extension. Each component of the SCATS was compared with the Ashworth Scale, the PSFS, and kinematic and electromyographic measurements by using the Spearman rank correlation test. RESULTS Clonus, flexor spasm, and extensor spasm responses measured by using the SCATS correlated significantly with kinematic and electromyographic recordings (P<.01). Significant correlations were also observed between the SCATS extensor spasms and the Ashworth scores for hip and knee flexors and for ankle plantarflexors (rho=.98, .88, .61, respectively). Also, SCATS flexor spasms and SCATS clonus scores correlated significantly with some of the Ashworth scores. Only SCATS clonus scores correlated significantly with spasm frequency measures (rho=.59, P<.05). CONCLUSIONS The SCATS produced a valid measure of 3 distinct types of spastic motor behaviors in SCI and may provide a complementary tool for measuring spastic hypertonia. Such a measure is valuable because current assessment tools do not differentiate between the different types of spastic motor behaviors that manifest after SCI. Distinguishing the 3 spastic reactions using an efficient and valid clinical tool may help guide management of spastic hypertonia in SCI.
Collapse
Affiliation(s)
- Ela N Benz
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
49
|
Iqbal K, Roy A. Stabilizing PID Controllers for a Single-Link Biomechanical Model with Position, Velocity, and Force Feedback. J Biomech Eng 2005; 126:838-43. [PMID: 15796343 DOI: 10.1115/1.1824134] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this paper we address the problem of PID stabilization of a single-link inverted pendulum-based biomechanical model with force feedback, two levels of position and velocity feedback, and with delays in all the feedback loops. The novelty of the proposed model lies in its physiological relevance, whereby both small and medium latency sensory feedbacks from muscle spindle (MS), and force feedback from Golgi tendon organ (GTO) are included in the formulation. The biomechanical model also includes active and passive viscoelastic feedback from Hill-type muscle model and a second-order low-pass function for muscle activation. The central nervous system (CNS) regulation of postural movement is represented by a proportional-integral-derivative (PID) controller. Pade´ approximation of delay terms is employed to arrive at an overall rational transfer function of the biomechanical model. The Hermite–Biehler theorem is then used to derive stability results, leading to the existence of stabilizing PID controllers. An algorithm for selection of stabilizing feedback gains is developed using the linear matrix inequality (LMI) approach.
Collapse
Affiliation(s)
- Kamran Iqbal
- Department of Systems Engineering, University of Arkansas at Little Rock, Little Rock, AR 72204, USA.
| | | |
Collapse
|
50
|
Hidler JM, Schmit BD. Evidence for force-feedback inhibition in chronic stroke. IEEE Trans Neural Syst Rehabil Eng 2004; 12:166-76. [PMID: 15218931 DOI: 10.1109/tnsre.2004.828428] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The presence of force-feedback inhibition was explored during reflex responses in five subjects with known incidence of stroke. Using constant velocity stretches, it was previously found that after movement onset, active reflex force progressively increases with increasing joint angle, at a rate proportional to a fractional exponent of the speed of stretch. However, after the reflex force magnitude exceeds a particular level, it begins rolling off until maintaining a steady-state value. The magnitudes of these force plateaus are correlated with the speed of stretch, such that higher movement speeds result in higher steady-state forces. Based upon these previous studies, we hypothesized that force plateau behavior could be explained by a force-feedback inhibitory pathway. To help facilitate an understanding of this stretch reflex force roll off, a simple model representing the elbow reflex pathways was developed. This model contained two separate feedback pathways, one representing the monosynaptic stretch reflex originating from muscle spindle excitation, and another representing force-feedback inhibition arising from force sensitive receptors. It was found that force-feedback inhibition altered the stretch reflex response, resulting in a force response that followed a sigmoidal shape similar to that observed experimentally. Furthermore, simulated reflex responses were highly dependent on force-feedback gain, where predicted reflex force began plateauing at decreasing levels with increases in this force-feedback gain. The parameters from the model fits indicate that the force threshold for force-sensitive receptors is relatively high, suggesting that the inhibition may arise from muscle free nerve endings rather than Golgi tendon organs. The experimental results coupled with the simulations of elbow reflex responses suggest the possibility that after stroke, the effectiveness of force-feedback inhibition may increase to a level that has functional significance. Practical implications of these findings are discussed in relation to muscle weakness commonly associated with stroke.
Collapse
Affiliation(s)
- Joseph M Hidler
- Department of Biomedical Engineering, Catholic University, Washington, DC 20064, USA.
| | | |
Collapse
|