1
|
Huang HY, Hsiao YP, Karmakar R, Mukundan A, Chaudhary P, Hsieh SC, Wang HC. A Review of Recent Advances in Computer-Aided Detection Methods Using Hyperspectral Imaging Engineering to Detect Skin Cancer. Cancers (Basel) 2023; 15:5634. [PMID: 38067338 PMCID: PMC10705122 DOI: 10.3390/cancers15235634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 08/15/2024] Open
Abstract
Skin cancer, a malignant neoplasm originating from skin cell types including keratinocytes, melanocytes, and sweat glands, comprises three primary forms: basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and malignant melanoma (MM). BCC and SCC, while constituting the most prevalent categories of skin cancer, are generally considered less aggressive compared to MM. Notably, MM possesses a greater capacity for invasiveness, enabling infiltration into adjacent tissues and dissemination via both the circulatory and lymphatic systems. Risk factors associated with skin cancer encompass ultraviolet (UV) radiation exposure, fair skin complexion, a history of sunburn incidents, genetic predisposition, immunosuppressive conditions, and exposure to environmental carcinogens. Early detection of skin cancer is of paramount importance to optimize treatment outcomes and preclude the progression of disease, either locally or to distant sites. In pursuit of this objective, numerous computer-aided diagnosis (CAD) systems have been developed. Hyperspectral imaging (HSI), distinguished by its capacity to capture information spanning the electromagnetic spectrum, surpasses conventional RGB imaging, which relies solely on three color channels. Consequently, this study offers a comprehensive exploration of recent CAD investigations pertaining to skin cancer detection and diagnosis utilizing HSI, emphasizing diagnostic performance parameters such as sensitivity and specificity.
Collapse
Affiliation(s)
- Hung-Yi Huang
- Department of Dermatology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chia Yi City 60002, Taiwan;
| | - Yu-Ping Hsiao
- Department of Dermatology, Chung Shan Medical University Hospital, No.110, Sec. 1, Jianguo N. Rd., South District, Taichung City 40201, Taiwan;
- Institute of Medicine, School of Medicine, Chung Shan Medical University, No.110, Sec. 1, Jianguo N. Rd., South District, Taichung City 40201, Taiwan
| | - Riya Karmakar
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi City 62102, Taiwan; (R.K.); (A.M.)
| | - Arvind Mukundan
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi City 62102, Taiwan; (R.K.); (A.M.)
| | - Pramod Chaudhary
- Department of Aeronautical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai 600 062, India;
| | - Shang-Chin Hsieh
- Department of Plastic Surgery, Kaohsiung Armed Forces General Hospital, 2, Zhongzheng 1st. Rd., Lingya District, Kaohsiung 80284, Taiwan
| | - Hsiang-Chen Wang
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi City 62102, Taiwan; (R.K.); (A.M.)
- Department of Medical Research, Dalin Tzu Chi General Hospital, No. 2, Min-Sheng Rd., Dalin Town, Chia Yi City 62247, Taiwan
- Technology Development, Hitspectra Intelligent Technology Co., Ltd., Kaohsiung 80661, Taiwan
| |
Collapse
|
2
|
Aloupogianni E, Ishikawa M, Kobayashi N, Obi T. Hyperspectral and multispectral image processing for gross-level tumor detection in skin lesions: a systematic review. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220029VR. [PMID: 35676751 PMCID: PMC9174598 DOI: 10.1117/1.jbo.27.6.060901] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/23/2022] [Indexed: 05/11/2023]
Abstract
SIGNIFICANCE Skin cancer is one of the most prevalent cancers worldwide. In the advent of medical digitization and telepathology, hyper/multispectral imaging (HMSI) allows for noninvasive, nonionizing tissue evaluation at a macroscopic level. AIM We aim to summarize proposed frameworks and recent trends in HMSI-based classification and segmentation of gross-level skin tissue. APPROACH A systematic review was performed, targeting HMSI-based systems for the classification and segmentation of skin lesions during gross pathology, including melanoma, pigmented lesions, and bruises. The review adhered to the 2020 Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. For eligible reports published from 2010 to 2020, trends in HMSI acquisition, preprocessing, and analysis were identified. RESULTS HMSI-based frameworks for skin tissue classification and segmentation vary greatly. Most reports implemented simple image processing or machine learning, due to small training datasets. Methodologies were evaluated on heavily curated datasets, with the majority targeting melanoma detection. The choice of preprocessing scheme influenced the performance of the system. Some form of dimension reduction is commonly applied to avoid redundancies that are inherent in HMSI systems. CONCLUSIONS To use HMSI for tumor margin detection in practice, the focus of system evaluation should shift toward the explainability and robustness of the decision-making process.
Collapse
Affiliation(s)
- Eleni Aloupogianni
- Tokyo Institute of Technology, Department of Information and Communication Engineering, Tokyo, Japan
- Address all correspondence to Eleni Aloupogianni,
| | - Masahiro Ishikawa
- Saitama Medical University, Faculty of Health and Medical Care, Saitama, Japan
| | - Naoki Kobayashi
- Saitama Medical University, Faculty of Health and Medical Care, Saitama, Japan
| | - Takashi Obi
- Tokyo Institute of Technology, Department of Information and Communication Engineering, Tokyo, Japan
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
3
|
Raita-Hakola AM, Annala L, Lindholm V, Trops R, Näsilä A, Saari H, Ranki A, Pölönen I. FPI Based Hyperspectral Imager for the Complex Surfaces—Calibration, Illumination and Applications. SENSORS 2022; 22:s22093420. [PMID: 35591109 PMCID: PMC9103796 DOI: 10.3390/s22093420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/13/2022] [Accepted: 04/23/2022] [Indexed: 01/27/2023]
Abstract
Hyperspectral imaging (HSI) applications for biomedical imaging and dermatological applications have been recently under research interest. Medical HSI applications are non-invasive methods with high spatial and spectral resolution. HS imaging can be used to delineate malignant tumours, detect invasions, and classify lesion types. Typical challenges of these applications relate to complex skin surfaces, leaving some skin areas unreachable. In this study, we introduce a novel spectral imaging concept and conduct a clinical pre-test, the findings of which can be used to develop the concept towards a clinical application. The SICSURFIS spectral imager concept combines a piezo-actuated Fabry–Pérot interferometer (FPI) based hyperspectral imager, a specially designed LED module and several sizes of stray light protection cones for reaching and adapting to the complex skin surfaces. The imager is designed for the needs of photometric stereo imaging for providing the skin surface models (3D) for each captured wavelength. The captured HS images contained 33 selected wavelengths (ranging from 477 nm to 891 nm), which were captured simultaneously with accordingly selected LEDs and three specific angles of light. The pre-test results show that the data collected with the new SICSURFIS imager enable the use of the spectral and spatial domains with surface model information. The imager can reach complex skin surfaces. Healthy skin, basal cell carcinomas and intradermal nevi lesions were classified and delineated pixel-wise with promising results, but further studies are needed. The results were obtained with a convolutional neural network.
Collapse
Affiliation(s)
- Anna-Maria Raita-Hakola
- Faculty of Information Technology, University of Jyväskylä, 40100 Jyväskylä, Finland; (L.A.); (I.P.)
- Correspondence:
| | - Leevi Annala
- Faculty of Information Technology, University of Jyväskylä, 40100 Jyväskylä, Finland; (L.A.); (I.P.)
| | - Vivian Lindholm
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland; (V.L.); (A.R.)
| | - Roberts Trops
- VTT Technical Research Centre of Finland Ltd., 02150 Espoo, Finland; (R.T.); (A.N.); (H.S.)
| | - Antti Näsilä
- VTT Technical Research Centre of Finland Ltd., 02150 Espoo, Finland; (R.T.); (A.N.); (H.S.)
| | - Heikki Saari
- VTT Technical Research Centre of Finland Ltd., 02150 Espoo, Finland; (R.T.); (A.N.); (H.S.)
| | - Annamari Ranki
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland; (V.L.); (A.R.)
| | - Ilkka Pölönen
- Faculty of Information Technology, University of Jyväskylä, 40100 Jyväskylä, Finland; (L.A.); (I.P.)
| |
Collapse
|
4
|
Curve-Based Classification Approach for Hyperspectral Dermatologic Data Processing. SENSORS 2021; 21:s21030680. [PMID: 33498303 PMCID: PMC7863929 DOI: 10.3390/s21030680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/24/2022]
Abstract
This paper shows new contributions in the detection of skin cancer, where we present the use of a customized hyperspectral system that captures images in the spectral range from 450 to 950 nm. By choosing a 7 × 7 sub-image of each channel in the hyperspectral image (HSI) and then taking the mean and standard deviation of these sub-images, we were able to make fits of the resulting curves. These fitted curves had certain characteristics, which then served as a basis of classification. The most distinct fit was for the melanoma pigmented skin lesions (PSLs), which is also the most aggressive malignant cancer. Furthermore, we were able to classify the other PSLs in malignant and benign classes. This gives us a rather complete classification method for PSLs with a novel perspective of the classification procedure by exploiting the variability of each channel in the HSI.
Collapse
|
5
|
A Spectral Filter Array Camera for Clinical Monitoring and Diagnosis: Proof of Concept for Skin Oxygenation Imaging. J Imaging 2019; 5:jimaging5080066. [PMID: 34460500 PMCID: PMC8320954 DOI: 10.3390/jimaging5080066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/03/2019] [Accepted: 07/20/2019] [Indexed: 11/25/2022] Open
Abstract
The emerging technology of spectral filter array (SFA) cameras has great potential for clinical applications, due to its unique capability for real time spectral imaging, at a reasonable cost. This makes such cameras particularly suitable for quantification of dynamic processes such as skin oxygenation. Skin oxygenation measurements are useful for burn wound healing assessment and as an indicator of patient complications in the operating room. Due to their unique design, in which all pixels of the image sensor are equipped with different optical filters, SFA cameras require specific image processing steps to obtain meaningful high quality spectral image data. These steps include spatial rearrangement, SFA interpolations and spectral correction. In this paper the feasibility of a commercially available SFA camera for clinical applications is tested. A suitable general image processing pipeline is proposed. As a ’proof of concept’ a complete system for spatial dynamic skin oxygenation measurements is developed and evaluated. In a study including 58 volunteers, oxygenation changes during upper arm occlusion were measured with the proposed SFA system and compared with a validated clinical device for localized oxygenation measurements. The comparison of the clinical standard measurements and SFA results show a good correlation for the relative oxygenation changes. This proposed processing pipeline for SFA cameras shows to be effective for relative oxygenation change imaging. It can be implemented in real time and developed further for absolute spatial oxygenation measurements.
Collapse
|