Besio WG, Martínez-Juárez IE, Makeyev O, Gaitanis JN, Blum AS, Fisher RS, Medvedev AV. High-Frequency Oscillations Recorded on the Scalp of Patients With Epilepsy Using Tripolar Concentric Ring Electrodes.
IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE-JTEHM 2014;
2:2000111. [PMID:
27170874 PMCID:
PMC4848054 DOI:
10.1109/jtehm.2014.2332994]
[Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/11/2014] [Accepted: 05/27/2013] [Indexed: 11/09/2022]
Abstract
Epilepsy is the second most prevalent neurological disorder ([Formula: see text]% prevalence) affecting [Formula: see text] million people worldwide with up to 75% from developing countries. The conventional electroencephalogram is plagued with artifacts from movements, muscles, and other sources. Tripolar concentric ring electrodes automatically attenuate muscle artifacts and provide improved signal quality. We performed basic experiments in healthy humans to show that tripolar concentric ring electrodes can indeed record the physiological alpha waves while eyes are closed. We then conducted concurrent recordings with conventional disc electrodes and tripolar concentric ring electrodes from patients with epilepsy. We found that we could detect high frequency oscillations, a marker for early seizure development and epileptogenic zone, on the scalp surface that appeared to become more narrow-band just prior to seizures. High frequency oscillations preceding seizures were present in an average of 35.5% of tripolar concentric ring electrode data channels for all the patients with epilepsy whose seizures were recorded and absent in the corresponding conventional disc electrode data. An average of 78.2% of channels that contained high frequency oscillations were within the seizure onset or irritative zones determined independently by three epileptologists based on conventional disc electrode data and videos.
Collapse