1
|
Chai R, Tran Y, Craig A, Ling SH, Nguyen HT. Enhancing accuracy of mental fatigue classification using advanced computational intelligence in an electroencephalography system. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2014:1338-41. [PMID: 25570210 DOI: 10.1109/embc.2014.6943846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A system using electroencephalography (EEG) signals could enhance the detection of mental fatigue while driving a vehicle. This paper examines the classification between fatigue and alert states using an autoregressive (AR) model-based power spectral density (PSD) as the features extraction method and fuzzy particle swarm optimization with cross mutated of artificial neural network (FPSOCM-ANN) as the classification method. Using 32-EEG channels, results indicated an improved overall specificity from 76.99% to 82.02%, an improved sensitivity from 74.92 to 78.99% and an improved accuracy from 75.95% to 80.51% when compared to previous studies. The classification using fewer EEG channels, with eleven frontal sites resulted in 77.52% for specificity, 73.78% for sensitivity and 75.65% accuracy being achieved. For ergonomic reasons, the configuration with fewer EEG channels will enhance capacity to monitor fatigue as there is less set-up time required.
Collapse
|
2
|
Batres-Mendoza P, Montoro-Sanjose CR, Guerra-Hernandez EI, Almanza-Ojeda DL, Rostro-Gonzalez H, Romero-Troncoso RJ, Ibarra-Manzano MA. Quaternion-Based Signal Analysis for Motor Imagery Classification from Electroencephalographic Signals. SENSORS 2016; 16:s16030336. [PMID: 26959029 PMCID: PMC4813911 DOI: 10.3390/s16030336] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 11/16/2022]
Abstract
Quaternions can be used as an alternative to model the fundamental patterns of electroencephalographic (EEG) signals in the time domain. Thus, this article presents a new quaternion-based technique known as quaternion-based signal analysis (QSA) to represent EEG signals obtained using a brain-computer interface (BCI) device to detect and interpret cognitive activity. This quaternion-based signal analysis technique can extract features to represent brain activity related to motor imagery accurately in various mental states. Experimental tests in which users where shown visual graphical cues related to left and right movements were used to collect BCI-recorded signals. These signals were then classified using decision trees (DT), support vector machine (SVM) and k-nearest neighbor (KNN) techniques. The quantitative analysis of the classifiers demonstrates that this technique can be used as an alternative in the EEG-signal modeling phase to identify mental states.
Collapse
Affiliation(s)
- Patricia Batres-Mendoza
- Laboratorio de Sistemas Bioinspirados, Departamento de Ingeniería Electrónica, DICIS, Universidad de Guanajuato, Carr. Salamanca-Valle de Santiago KM. 3.5 + 1.8 Km., Salamanca 36885, Mexico.
| | - Carlos R Montoro-Sanjose
- Departamento de Arte y Empresa, DICIS, Universidad de Guanajuato, Carr. Salamanca-Valle de Santiago KM. 3.5 + 1.8 Km., Salamanca 36885, Mexico.
- Cuerpo Académico de Telemática, DICIS, Universidad de Guanajuato, Carr. Salamanca-Valle de Santiago KM. 3.5 + 1.8 Km., Salamanca 36885, Mexico.
| | - Erick I Guerra-Hernandez
- Laboratorio de Sistemas Bioinspirados, Departamento de Ingeniería Electrónica, DICIS, Universidad de Guanajuato, Carr. Salamanca-Valle de Santiago KM. 3.5 + 1.8 Km., Salamanca 36885, Mexico.
| | - Dora L Almanza-Ojeda
- Laboratorio de Procesamiento Digital de Señales, Departamento de Ingeniería Electrónica, DICIS, Universidad de Guanajuato, Carr. Salamanca-Valle de Santiago KM. 3.5 + 1.8 Km., Salamanca 36885, Mexico.
| | - Horacio Rostro-Gonzalez
- Laboratorio de Sistemas Bioinspirados, Departamento de Ingeniería Electrónica, DICIS, Universidad de Guanajuato, Carr. Salamanca-Valle de Santiago KM. 3.5 + 1.8 Km., Salamanca 36885, Mexico.
- Cuerpo Académico de Telemática, DICIS, Universidad de Guanajuato, Carr. Salamanca-Valle de Santiago KM. 3.5 + 1.8 Km., Salamanca 36885, Mexico.
| | - Rene J Romero-Troncoso
- Cuerpo Académico de Telemática, DICIS, Universidad de Guanajuato, Carr. Salamanca-Valle de Santiago KM. 3.5 + 1.8 Km., Salamanca 36885, Mexico.
- Departamento de Ingeniería Electrónica, DICIS, Universidad de Guanajuato, Carr. Salamanca-Valle de Santiago KM. 3.5 + 1.8 Km., Salamanca 36885, Mexico.
| | - Mario A Ibarra-Manzano
- Cuerpo Académico de Telemática, DICIS, Universidad de Guanajuato, Carr. Salamanca-Valle de Santiago KM. 3.5 + 1.8 Km., Salamanca 36885, Mexico.
- Laboratorio de Procesamiento Digital de Señales, Departamento de Ingeniería Electrónica, DICIS, Universidad de Guanajuato, Carr. Salamanca-Valle de Santiago KM. 3.5 + 1.8 Km., Salamanca 36885, Mexico.
| |
Collapse
|