1
|
Qian Y, Cheng Y, Chen S, Zhang M, Fang Y, Zhang T. Comparative biomechanical analysis of a conventional/novel hip prosthetic socket. Med Biol Eng Comput 2025; 63:417-428. [PMID: 39361102 DOI: 10.1007/s11517-024-03206-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/17/2024] [Indexed: 01/22/2025]
Abstract
The aim of this study was to investigate and compare the biomechanical properties of the conventional and novel hip prosthetic socket by using the finite element and gait analysis. According to the CT scan model of the subject's residual limb, the bones, soft tissues, and the socket model were reconstructed in three dimensions by using inverse modeling. The distribution of normal and shear stresses at the residual limb-socket interface under the standing condition was investigated using the finite element method and verified by designing a pressure acquisition module system. The gait experiment compared and analyzed the conventional and novel sockets. The results show that the simulation results are consistent with the experimental data. The novel socket exhibited superior stress performance and gait outcomes compared to the conventional design. Our findings provide a research basis for evaluating the comfort of the hip prosthetic socket, optimizing and designing the structure of the socket of the hip.
Collapse
Affiliation(s)
- Yu Qian
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Interventional Medical Device, Shanghai, China
| | - Yunzhang Cheng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Interventional Medical Device, Shanghai, China
| | - Shiyao Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Interventional Medical Device, Shanghai, China
| | - Mingwei Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Interventional Medical Device, Shanghai, China
| | - Yingyu Fang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Interventional Medical Device, Shanghai, China
| | - Tianyi Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
- Shanghai Engineering Research Center of Interventional Medical Device, Shanghai, China.
| |
Collapse
|
2
|
Henao SC, Orozco C, Ramírez J. Influence of Gait Cycle Loads on Stress Distribution at The Residual Limb/Socket Interface of Transfemoral Amputees: A Finite Element Analysis. Sci Rep 2020; 10:4985. [PMID: 32193432 PMCID: PMC7081319 DOI: 10.1038/s41598-020-61915-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 03/03/2020] [Indexed: 01/30/2023] Open
Abstract
A Finite Element Analysis (FEA) was performed to evaluate the interaction between residual limb and socket when considering the dynamic loads of the gait cycle. Fourteen transfemoral amputees participated in this study, where their residual limbs (i.e., soft tissues and bone), and their sockets were reconstructed. The socket and the femur were defined as elastic materials, while the bulk soft tissues were defined as a hyperelastic material. Each model included the donning, standing, and gait cycle phase, with load and boundary conditions applied accordingly. The influence of adding the dynamic loads related to the gait cycle were compared against the modelling of the static load equivalent to the standing position resulting in changes of 23% ± 19% in the maximum values and in an increase in the size of the regions where they were located. Additionally, the possible correspondence between comfort and the location of peak loadbearing at the residual-limb/socket interface was explored. Consequently, the comfort perceived by the patient could be estimated based on the locations of the maximum stresses (i.e., if they coincide with the pressure tolerant or sensitive regions of the residual limb).
Collapse
Affiliation(s)
- Sofía C Henao
- Department of Mechanical Engineering, Universidad Nacional de Colombia, Medellin, Colombia.
| | - Camila Orozco
- Department of Mechanical Engineering, Universidad Nacional de Colombia, Medellin, Colombia
| | - Juan Ramírez
- Department of Mechanical Engineering, Universidad Nacional de Colombia, Medellin, Colombia.
| |
Collapse
|
3
|
Ramasamy E, Avci O, Dorow B, Chong SY, Gizzi L, Steidle G, Schick F, Röhrle O. An Efficient Modelling-Simulation-Analysis Workflow to Investigate Stump-Socket Interaction Using Patient-Specific, Three-Dimensional, Continuum-Mechanical, Finite Element Residual Limb Models. Front Bioeng Biotechnol 2018; 6:126. [PMID: 30283777 PMCID: PMC6156538 DOI: 10.3389/fbioe.2018.00126] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 08/23/2018] [Indexed: 11/30/2022] Open
Abstract
The lack of an efficient modelling-simulation-analysis workflow for creating and utilising detailed subject-specific computational models is one of the key reasons why simulation-based approaches for analysing socket-stump interaction have not yet been successfully established. Herein, we propose a novel and efficient modelling-simulation-analysis workflow that uses commercial software for generating a detailed subject-specific, three-dimensional finite element model of an entire residual limb from Diffusion Tensor MRI images in <20 min. Moreover, to complete the modelling-simulation-analysis workflow, the generated subject-specific residual limb model is used within an implicit dynamic FE simulation of bipedal stance to predict the potential sites of deep tissue injury. For this purpose, a nonlinear hyperelastic, transversely isotropic skeletal muscle constitutive law containing a deep tissue injury model was implemented in LS-DYNA. To demonstrate the feasibility of the entire modelling-simulation-analysis workflow and the fact that detailed, anatomically realistic, multi-muscle models are superior to state-of-the-art, fused-muscle models, an implicit dynamic FE analysis of 2-h bipedal stance is carried out. By analysing the potential volume of damaged muscle tissue after donning an optimally-fitted and a misfitted socket, i.e., a socket whose volume was isotropically shrunk by 10%, we were able to highlight the differences between the detailed individual- and fused-muscle models. The results of the bipedal stance simulation showed that peak stresses in the fused-muscle model were four times lower when compared to the multi-muscle model. The peak interface stress in the individual-muscle model, at the end of bipedal stance analysis, was 2.63 times lower than that in the deep tissues of the stump. At the end of the bipedal stance analysis using the misfitted socket, the fused-muscle model predicted that 7.65% of the residual limb volume was injured, while the detailed-model predicted 16.03%. The proposed approach is not only limited to modelling residual limbs but also has applications in predicting the impact of plastic surgery, for detailed forward-dynamics simulations of normal musculoskeletal systems.
Collapse
Affiliation(s)
- Ellankavi Ramasamy
- Department of Biomechatronic Systems, Fraunhofer-Institut für Produktionstechnik und Automatisierung (Fraunhofer IPA), Stuttgart, Germany
| | - Okan Avci
- Department of Biomechatronic Systems, Fraunhofer-Institut für Produktionstechnik und Automatisierung (Fraunhofer IPA), Stuttgart, Germany
| | - Beate Dorow
- Department of Biomechatronic Systems, Fraunhofer-Institut für Produktionstechnik und Automatisierung (Fraunhofer IPA), Stuttgart, Germany
| | - Sook-Yee Chong
- Diagnostische und Interventionelle Radiologie, Sektion für Experimentelle Radiologie, Department für Radiologie, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Leonardo Gizzi
- Institut für Mechanik (Bauwesen), Universität Stuttgart, Stuttgart, Germany
| | - Günter Steidle
- Diagnostische und Interventionelle Radiologie, Sektion für Experimentelle Radiologie, Department für Radiologie, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Fritz Schick
- Diagnostische und Interventionelle Radiologie, Sektion für Experimentelle Radiologie, Department für Radiologie, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Oliver Röhrle
- Department of Biomechatronic Systems, Fraunhofer-Institut für Produktionstechnik und Automatisierung (Fraunhofer IPA), Stuttgart, Germany.,Diagnostische und Interventionelle Radiologie, Sektion für Experimentelle Radiologie, Department für Radiologie, Universitätsklinikum Tübingen, Tübingen, Germany.,Stuttgart Centre for Simulation Sciences, Universität Stuttgart, Stuttgart, Germany
| |
Collapse
|