1
|
Li J, Zhu L, Zhu R, Lu Y, Rong X, Zhang Y, Gu X, Wang Y, Zhang Z, Ren Q, Rong B, Yang L. Automated Analysis of Choroidal Sublayer Morphologic Features in Myopic Children Using EDI-OCT by Deep Learning. Transl Vis Sci Technol 2021; 10:12. [PMID: 34751742 PMCID: PMC8590176 DOI: 10.1167/tvst.10.13.12] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to analyze the choroidal sublayer morphologic features in emmetropic and myopic children using an automatic segmentation model, and to explore the relationship between choroidal sublayers and spherical equivalent refraction (SER). Methods We collected data on 92 healthy children (92 eyes) from the Ophthalmology Department of Peking University First Hospital. The data were allocated to three groups: emmetropia (+0.50 diopters [D] to -0.50 D), low myopia (-0.75 D to -3.00 D), and moderate myopia (-3.25 D to -5.75 D). We performed standardized optical coherence tomography (OCT) and developed a new segmentation technique to measure choroidal thickness (CT), large-vessel choroidal layer (LVCL), medium-vessel choroidal layer (MVCL), and small-vessel choroidal layer thickness (SVCL), and evaluated the choroidal vascular system (choroidal vascular volume [VV], choroidal vascular index [CVI], and choroidal vascular density [CVD]). Results All choroidal sublayers (LVCL, MVCL, and SVCL) were significantly thinner in myopic than in emmetropic eyes (P < 0.05), the thinnest choroidal region being the nasal outer subfield (P < 0.05). In all choroidal regions of SVCL, a positive correlation was found between SER and thickness ratio (P < 0.001). In most subfields of MVCL, a similar correlation was found (P < 0.050), the exceptions being the two nasal subfields (0.050 < P < 0.300). In contrast, the thickness ratio of LVCL decreased in all subfields (P < 0.050). VV correlated with SER negatively in LVCL in all subfields (all P < 0.001) and most subfields in MVCL except for two temporal subfields (0.050 < P < 0.200). However, no significant correlations were found between CVI and SER in LVCL (P > 0.050) and MVCL (with the exception being the temporal inner subfield, P = 0.011). Conclusions Thickness of choroidal sublayers was reduced with higher myopic SER, whereas changes in thickness ratio varied between sublayers. No significant correlations between CVI and SER suggested that both choroidal stromal and vascular volume decreases proportionately. Translational Relevance Automatic segmentation model will be helpful for future clinical trials to quantify choroidal sublayer morphologic features in myopia.
Collapse
Affiliation(s)
- Junmeng Li
- Department of Ophthalmology, Peking University First Hospital, Beijing, China.,Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing, China
| | - Lei Zhu
- Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing, China.,Department of Biomedical Engineering, Peking University, Beijing, China
| | - Ruilin Zhu
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Yanye Lu
- Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing, China
| | - Xin Rong
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Yadi Zhang
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Xiaopeng Gu
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Yuwei Wang
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Zhiyue Zhang
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Qiushi Ren
- Department of Biomedical Engineering, Peking University, Beijing, China
| | - Bei Rong
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Liu Yang
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| |
Collapse
|
2
|
Choroidal binarization analysis: clinical application. Int Ophthalmol 2019; 39:2947-2973. [PMID: 31140022 DOI: 10.1007/s10792-019-01122-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 05/22/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Image processing of optical coherence tomography scans through binarization techniques represent a non-invasive way to separately asses and measure choroidal components, in vivo. In this review, we systematically search the scientific literature regarding binarization studies published so far. METHODS A systematic research was conducted at PubMed database, including English literature articles for all of the following terms in various combinations: binarization, choroid/al, enhanced depth spectral domain/swept source optic coherence tomography, and latest publications up to November 2018 were reviewed. RESULTS Thirty-seven articles were included and analyzed regarding studied disease, binarization method, studied variables, and outcomes. Most of the studies have focused on the more common retinal pathologies, such as age-related macular degeneration, central serous chorioretinopathy and diabetic retinopathy but binarization techniques have also been applied to the study of choroidal characteristics in ocular inflammatory diseases, corneal dystrophies and in postsurgical follow-up. Advantages and disadvantages of binarization techniques are also discussed. CONCLUSION Binarization of choroidal images seems to represent a promising approach to study choroid subcomponents in an increasingly detailed manner.
Collapse
|
3
|
Zhao J, Wang YX, Zhang Q, Wei WB, Xu L, Jonas JB. Macular Choroidal Small-Vessel Layer, Sattler's Layer and Haller's Layer Thicknesses: The Beijing Eye Study. Sci Rep 2018. [PMID: 29535365 PMCID: PMC5849687 DOI: 10.1038/s41598-018-22745-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To study macular choroidal layer thickness, 3187 study participants from the population-based Beijing Eye Study underwent spectral-domain optical coherence tomography with enhanced depth imaging for thickness measurements of the macular small-vessel layer, including the choriocapillaris, medium-sized choroidal vessel layer (Sattler’s layer) and large choroidal vessel layer (Haller’s layer). In multivariate analysis, greater thickness of all three choroidal layers was associated (all P < 0.05) with higher prevalence of age-related macular degeneration (AMD) (except for geographic atrophy), while it was not significantly (all P > 0.05) associated with the prevalence of open-angle glaucoma or diabetic retinopathy. There was a tendency (0.07 > P > 0.02) toward thinner choroidal layers in chronic angle-closure glaucoma. The ratio of small-vessel layer thickness to total choroidal thickness increased (P < 0.001; multivariate analysis) with older age and longer axial length, while the ratios of Sattler’s layer and Haller’s layer thickness to total choroidal thickness decreased. A higher ratio of small-vessel layer thickness to total choroidal thickness was significantly associated with a lower prevalence of AMD (early type, intermediate type, late geographic type). Axial elongation-associated and aging-associated choroidal thinning affected Haller’s and Sattler’s layers more markedly than the small-vessel layer. Non-exudative and exudative AMD, except for geographic atrophy, was associated with slightly increased choroidal thickness.
Collapse
Affiliation(s)
- Jing Zhao
- Beijing Institute of Ophthalmology and Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ya Xing Wang
- Beijing Institute of Ophthalmology and Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| | - Qi Zhang
- Beijing Institute of Ophthalmology and Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wen Bin Wei
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| | - Liang Xu
- Beijing Institute of Ophthalmology and Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| | - Jost B Jonas
- Beijing Institute of Ophthalmology and Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Department of Ophthalmology, Medical Faculty Mannheim, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| |
Collapse
|
4
|
Agrawal R, Li LKH, Nakhate V, Khandelwal N, Mahendradas P. Choroidal Vascularity Index in Vogt-Koyanagi-Harada Disease: An EDI-OCT Derived Tool for Monitoring Disease Progression. Transl Vis Sci Technol 2016; 5:7. [PMID: 27525196 PMCID: PMC4970799 DOI: 10.1167/tvst.5.4.7] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/26/2016] [Indexed: 11/24/2022] Open
Abstract
Purpose We assessed the application of the choroidal vascularity index (CVI) in the follow-up of Vogt-Koyanagi-Harada disease (VKH) patients derived from image binarization of enhanced depth imaging optical coherence tomography (EDI-OCT) images with Fiji software. Our secondary objective was to derive the retinochoroidal vascularity index based on en face fundus fluorescein and indocyanine green angiography (FFA and ICGA). Methods In this retrospective cohort study, EDI-OCT scans of 18 eyes of 9 patients with VKH were obtained at baseline within 2 weeks of acute presentation, and again at 6 to 12 months. Images with poor quality were excluded. Choroidal thickness (CT) and CVI were analyzed and compared to 13 eyes of 13 healthy controls. En face FFA and ICGA obtained from 12 eyes of 7 patients were segmented to derive retinochoroidal vascularity index. Results There was no statistical difference in age or sex between the study group and controls. Choroidal thickness of patients with VKH was 359.23 ± 57.63 μm at baseline, compared to 274.09 ± 56.98 μm in controls (P = 0.003). Follow-up CT in VKH patients was 282.62 ± 42.51 μm, which was significantly decreased from baseline (P = 0.0001). Choroidal vascularity index in VKH patients was 70.03 ± 1.93% at baseline, compared to 64.63 ± 1.92% in controls (P < 0.001). Choroidal vascularity index was 66.94 ± 1.82% at follow-up, significantly reduced from baseline (P < 0.0001). Fundus fluorescein angiography and ICGA retinochoroidal vascularity indices at baseline were 70.67 ± 2.65% and 66.42 ± 2.16%, respectively. Conclusions In this small series of VKH patients, EDI-OCT–derived CVI had a statistically significant reduction over time, similar to CT. We propose that OCT, FFA, and ICGA-derived vascularity indices may be potential novel supportive tools in monitoring disease progression in VKH. Translational Relevance Choroidal vascularity index can be used potentially to study and analyze the structural changes in choroid. It can be a useful tool to explain the changes in the CT in different retinochoroidal disorders. Choroidal vascularity index also can be used for longitudinal follow-up in patients with VKH disease and other inflammatory disease involving the choroid.
Collapse
Affiliation(s)
- Rupesh Agrawal
- National Healthcare Group Eye Institute Tan Tock Seng Hospital, Singapore
| | - Lilian Koh Hui Li
- National Healthcare Group Eye Institute Tan Tock Seng Hospital, Singapore
| | | | - Neha Khandelwal
- National Healthcare Group Eye Institute Tan Tock Seng Hospital, Singapore
| | | |
Collapse
|
5
|
Agrawal R, Salman M, Tan KA, Karampelas M, Sim DA, Keane PA, Pavesio C. Choroidal Vascularity Index (CVI)--A Novel Optical Coherence Tomography Parameter for Monitoring Patients with Panuveitis? PLoS One 2016; 11:e0146344. [PMID: 26751702 PMCID: PMC4713828 DOI: 10.1371/journal.pone.0146344] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 12/16/2015] [Indexed: 01/17/2023] Open
Abstract
PURPOSE To compute choroidal vascularity index (CVI) using an image binarization tool on enhanced depth imaging (EDI)-optical coherence tomography (OCT) scans as a non-invasive optical tool to monitor progression in panuveitis and to investigate the utility of volumetric data from EDI-OCT scans using custom image analysis software. MATERIALS AND METHODS In this retrospective cohort study, segmented EDI-OCT scans of both eyes in 19 patients with panuveitis were taken at baseline and at 3-month follow-up and were compared with EDI-OCT scans of normal eyes. Subfoveal choroidal area was segmented into luminal (LA) and stromal interstitial area (SA). Choroidal vascularity index (CVI) was defined as the proportion of LA to the total circumscribed subfoveal choroidal area (TCA). RESULTS The mean choroidal thickness was 265.5±100.1μm at baseline and 278.4±102.6μm at 3 months follow up (p = 0.06). There was no statistically significant difference in TCA between study and control eyes (p = 0.08). CVI in the control group was 66.9±1.5% at baseline and 66.4±1.5% at follow up. CVI was 74.1±4.7% at baseline and 69.4±4.8% at 3 months follow up for uveitic eyes (p<0.001). The % change in CVI was 6.2 ±3.8 (4.3 to 8.0) for uveitic eyes, which was significantly higher from % change in CVI for control eyes (0.7±1.1, 0.2 to 1.3, p<0.001). CONCLUSION The study reports composite OCT-derived parameters and CVI as a possible novel tool in monitoring progression in panuveitis. CVI may be further validated in larger studies as a novel optical tool to quantify choroidal vascular status.
Collapse
Affiliation(s)
- Rupesh Agrawal
- Moorfields Eye Hospital, NHS Foundation Trust, London, United Kingdom
- University College London, Institute of Ophthalmology, London, United Kingdom
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
- * E-mail:
| | - Mohammed Salman
- University College London, Institute of Ophthalmology, London, United Kingdom
| | - Kara-Anne Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Michael Karampelas
- Moorfields Eye Hospital, NHS Foundation Trust, London, United Kingdom
- West Hertfordshire NHS Trust, London, United Kingdom
| | - Dawn A. Sim
- Moorfields Eye Hospital, NHS Foundation Trust, London, United Kingdom
- University College London, Institute of Ophthalmology, London, United Kingdom
| | - Pearse A. Keane
- Moorfields Eye Hospital, NHS Foundation Trust, London, United Kingdom
- University College London, Institute of Ophthalmology, London, United Kingdom
- NIHR Biomedical Research Centre, Moorfields Eye Hospital, London, United Kingdom
| | - Carlos Pavesio
- Moorfields Eye Hospital, NHS Foundation Trust, London, United Kingdom
- University College London, Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
6
|
Srinath N, Patil A, Kumar VK, Jana S, Chhablani J, Richhariya A. Automated detection of choroid boundary and vessels in optical coherence tomography images. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2014; 2014:166-9. [PMID: 25569923 DOI: 10.1109/embc.2014.6943555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Structural changes in the choroid, a layer located between the retina and sclera, could indicate various vision impairments. Consequently, ophthalmologists inspect optical coherence tomography (OCT) scans of the posterior section of the eye towards making diagnosis. With a view to assist diagnosis, we propose an automated technique for segmentation of the choroid layer. Specifically, we detect the upper and lower boundaries of the choroid using structural similarity and adaptive Hessian analysis. Subsequently, we detect choroid vessels within those boundaries using a level set method. Experimental results are presented using spectral domain (SD) OCT images.
Collapse
|