4
|
Tous C, Li N, Dimov IP, Kadoury S, Tang A, Häfeli UO, Nosrati Z, Saatchi K, Moran G, Couch MJ, Martel S, Lessard S, Soulez G. Navigation of Microrobots by MRI: Impact of Gravitational, Friction and Thrust Forces on Steering Success. Ann Biomed Eng 2021; 49:3724-3736. [PMID: 34622313 DOI: 10.1007/s10439-021-02865-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Magnetic resonance navigation (MRN) uses MRI gradients to steer magnetic drug-eluting beads (MDEBs) across vascular bifurcations. We aim to experimentally verify our theoretical forces balance model (gravitational, thrust, friction, buoyant and gradient steering forces) to improve the MRN targeted success rate. METHOD A single-bifurcation phantom (3 mm inner diameter) made of poly-vinyl alcohol was connected to a cardiac pump at 0.8 mL/s, 60 beats/minutes with a glycerol solution to reproduce the viscosity of blood. MDEB aggregates (25 ± 6 particles, 200 [Formula: see text]) were released into the main branch through a 5F catheter. The phantom was tilted horizontally from - 10° to +25° to evaluate the MRN performance. RESULTS The gravitational force was equivalent to 71.85 mT/m in a 3T MRI. The gradient duration and amplitude had a power relationship (amplitude=78.717 [Formula: see text]). It was possible, in 15° elevated vascular branches, to steer 87% of injected aggregates if two MRI gradients are simultaneously activated ([Formula: see text] = +26.5 mT/m, [Formula: see text]= +18 mT/m for 57% duty cycle), the flow velocity was minimized to 8 cm/s and a residual pulsatile flow to minimize the force of friction. CONCLUSION Our experimental model can determine the maximum elevation angle MRN can perform in a single-bifurcation phantom simulating in vivo conditions.
Collapse
Affiliation(s)
- Cyril Tous
- Centre de recherche du Centre hospitalier de l, Université de Montréal (CRCHUM), 900 Rue Saint-Denis, Montreal, QC, H2X 0A9, Canada.,Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC, H3T 1J4, Canada
| | - Ning Li
- Centre de recherche du Centre hospitalier de l, Université de Montréal (CRCHUM), 900 Rue Saint-Denis, Montreal, QC, H2X 0A9, Canada.,Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC, H3T 1J4, Canada
| | - Ivan P Dimov
- Centre de recherche du Centre hospitalier de l, Université de Montréal (CRCHUM), 900 Rue Saint-Denis, Montreal, QC, H2X 0A9, Canada
| | - Samuel Kadoury
- Polytechnique Montréal, 2500 Chemin de Polytechnique, 28, Montreal, QC, H3T 1J4, Canada
| | - An Tang
- Centre de recherche du Centre hospitalier de l, Université de Montréal (CRCHUM), 900 Rue Saint-Denis, Montreal, QC, H2X 0A9, Canada.,Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC, H3T 1J4, Canada
| | - Urs O Häfeli
- University of British Columbia, 2405 Westbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Zeynab Nosrati
- University of British Columbia, 2405 Westbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Katayoun Saatchi
- University of British Columbia, 2405 Westbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | | | | | - Sylvain Martel
- Polytechnique Montréal, 2500 Chemin de Polytechnique, 28, Montreal, QC, H3T 1J4, Canada
| | - Simon Lessard
- Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC, H3T 1J4, Canada.,École de Technologie Supérieur, 1100 Rue Notre-Dame O, Montreal, QC, H3C 1K3, Canada
| | - Gilles Soulez
- Centre de recherche du Centre hospitalier de l, Université de Montréal (CRCHUM), 900 Rue Saint-Denis, Montreal, QC, H2X 0A9, Canada. .,Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC, H3T 1J4, Canada.
| |
Collapse
|
8
|
Chepelev L, Wake N, Ryan J, Althobaity W, Gupta A, Arribas E, Santiago L, Ballard DH, Wang KC, Weadock W, Ionita CN, Mitsouras D, Morris J, Matsumoto J, Christensen A, Liacouras P, Rybicki FJ, Sheikh A. Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): guidelines for medical 3D printing and appropriateness for clinical scenarios. 3D Print Med 2018; 4:11. [PMID: 30649688 PMCID: PMC6251945 DOI: 10.1186/s41205-018-0030-y] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/19/2018] [Indexed: 02/08/2023] Open
Abstract
Medical three-dimensional (3D) printing has expanded dramatically over the past three decades with growth in both facility adoption and the variety of medical applications. Consideration for each step required to create accurate 3D printed models from medical imaging data impacts patient care and management. In this paper, a writing group representing the Radiological Society of North America Special Interest Group on 3D Printing (SIG) provides recommendations that have been vetted and voted on by the SIG active membership. This body of work includes appropriate clinical use of anatomic models 3D printed for diagnostic use in the care of patients with specific medical conditions. The recommendations provide guidance for approaches and tools in medical 3D printing, from image acquisition, segmentation of the desired anatomy intended for 3D printing, creation of a 3D-printable model, and post-processing of 3D printed anatomic models for patient care.
Collapse
Affiliation(s)
- Leonid Chepelev
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON Canada
| | - Nicole Wake
- Center for Advanced Imaging Innovation and Research (CAI2R), Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY USA
- Sackler Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY USA
| | | | - Waleed Althobaity
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON Canada
| | - Ashish Gupta
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON Canada
| | - Elsa Arribas
- Department of Diagnostic Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Lumarie Santiago
- Department of Diagnostic Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - David H Ballard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO USA
| | - Kenneth C Wang
- Baltimore VA Medical Center, University of Maryland Medical Center, Baltimore, MD USA
| | - William Weadock
- Department of Radiology and Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI USA
| | - Ciprian N Ionita
- Department of Neurosurgery, State University of New York Buffalo, Buffalo, NY USA
| | - Dimitrios Mitsouras
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON Canada
| | | | | | - Andy Christensen
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON Canada
| | - Peter Liacouras
- 3D Medical Applications Center, Walter Reed National Military Medical Center, Washington, DC, USA
| | - Frank J Rybicki
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON Canada
| | - Adnan Sheikh
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON Canada
| |
Collapse
|
10
|
Mitsouras D, Liacouras P, Imanzadeh A, Giannopoulos AA, Cai T, Kumamaru KK, George E, Wake N, Caterson EJ, Pomahac B, Ho VB, Grant GT, Rybicki FJ. Medical 3D Printing for the Radiologist. Radiographics 2016; 35:1965-88. [PMID: 26562233 DOI: 10.1148/rg.2015140320] [Citation(s) in RCA: 366] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Dimitris Mitsouras
- From the Applied Imaging Science Laboratory, Department of Radiology (D.M., A.I., A.A.G., T.C., K.K.K., E.G., F.J.R.), and Division of Plastic Surgery, Department of Surgery (E.J.C., B.P.), Brigham and Women's Hospital, Boston, Mass; 3D Medical Applications Center, Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (P.L., V.B.H., G.T.G.); Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Medical Center, New York, NY (N.W.); and Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY (N.W.)
| | - Peter Liacouras
- From the Applied Imaging Science Laboratory, Department of Radiology (D.M., A.I., A.A.G., T.C., K.K.K., E.G., F.J.R.), and Division of Plastic Surgery, Department of Surgery (E.J.C., B.P.), Brigham and Women's Hospital, Boston, Mass; 3D Medical Applications Center, Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (P.L., V.B.H., G.T.G.); Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Medical Center, New York, NY (N.W.); and Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY (N.W.)
| | - Amir Imanzadeh
- From the Applied Imaging Science Laboratory, Department of Radiology (D.M., A.I., A.A.G., T.C., K.K.K., E.G., F.J.R.), and Division of Plastic Surgery, Department of Surgery (E.J.C., B.P.), Brigham and Women's Hospital, Boston, Mass; 3D Medical Applications Center, Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (P.L., V.B.H., G.T.G.); Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Medical Center, New York, NY (N.W.); and Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY (N.W.)
| | - Andreas A Giannopoulos
- From the Applied Imaging Science Laboratory, Department of Radiology (D.M., A.I., A.A.G., T.C., K.K.K., E.G., F.J.R.), and Division of Plastic Surgery, Department of Surgery (E.J.C., B.P.), Brigham and Women's Hospital, Boston, Mass; 3D Medical Applications Center, Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (P.L., V.B.H., G.T.G.); Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Medical Center, New York, NY (N.W.); and Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY (N.W.)
| | - Tianrun Cai
- From the Applied Imaging Science Laboratory, Department of Radiology (D.M., A.I., A.A.G., T.C., K.K.K., E.G., F.J.R.), and Division of Plastic Surgery, Department of Surgery (E.J.C., B.P.), Brigham and Women's Hospital, Boston, Mass; 3D Medical Applications Center, Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (P.L., V.B.H., G.T.G.); Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Medical Center, New York, NY (N.W.); and Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY (N.W.)
| | - Kanako K Kumamaru
- From the Applied Imaging Science Laboratory, Department of Radiology (D.M., A.I., A.A.G., T.C., K.K.K., E.G., F.J.R.), and Division of Plastic Surgery, Department of Surgery (E.J.C., B.P.), Brigham and Women's Hospital, Boston, Mass; 3D Medical Applications Center, Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (P.L., V.B.H., G.T.G.); Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Medical Center, New York, NY (N.W.); and Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY (N.W.)
| | - Elizabeth George
- From the Applied Imaging Science Laboratory, Department of Radiology (D.M., A.I., A.A.G., T.C., K.K.K., E.G., F.J.R.), and Division of Plastic Surgery, Department of Surgery (E.J.C., B.P.), Brigham and Women's Hospital, Boston, Mass; 3D Medical Applications Center, Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (P.L., V.B.H., G.T.G.); Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Medical Center, New York, NY (N.W.); and Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY (N.W.)
| | - Nicole Wake
- From the Applied Imaging Science Laboratory, Department of Radiology (D.M., A.I., A.A.G., T.C., K.K.K., E.G., F.J.R.), and Division of Plastic Surgery, Department of Surgery (E.J.C., B.P.), Brigham and Women's Hospital, Boston, Mass; 3D Medical Applications Center, Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (P.L., V.B.H., G.T.G.); Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Medical Center, New York, NY (N.W.); and Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY (N.W.)
| | - Edward J Caterson
- From the Applied Imaging Science Laboratory, Department of Radiology (D.M., A.I., A.A.G., T.C., K.K.K., E.G., F.J.R.), and Division of Plastic Surgery, Department of Surgery (E.J.C., B.P.), Brigham and Women's Hospital, Boston, Mass; 3D Medical Applications Center, Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (P.L., V.B.H., G.T.G.); Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Medical Center, New York, NY (N.W.); and Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY (N.W.)
| | - Bohdan Pomahac
- From the Applied Imaging Science Laboratory, Department of Radiology (D.M., A.I., A.A.G., T.C., K.K.K., E.G., F.J.R.), and Division of Plastic Surgery, Department of Surgery (E.J.C., B.P.), Brigham and Women's Hospital, Boston, Mass; 3D Medical Applications Center, Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (P.L., V.B.H., G.T.G.); Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Medical Center, New York, NY (N.W.); and Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY (N.W.)
| | - Vincent B Ho
- From the Applied Imaging Science Laboratory, Department of Radiology (D.M., A.I., A.A.G., T.C., K.K.K., E.G., F.J.R.), and Division of Plastic Surgery, Department of Surgery (E.J.C., B.P.), Brigham and Women's Hospital, Boston, Mass; 3D Medical Applications Center, Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (P.L., V.B.H., G.T.G.); Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Medical Center, New York, NY (N.W.); and Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY (N.W.)
| | - Gerald T Grant
- From the Applied Imaging Science Laboratory, Department of Radiology (D.M., A.I., A.A.G., T.C., K.K.K., E.G., F.J.R.), and Division of Plastic Surgery, Department of Surgery (E.J.C., B.P.), Brigham and Women's Hospital, Boston, Mass; 3D Medical Applications Center, Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (P.L., V.B.H., G.T.G.); Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Medical Center, New York, NY (N.W.); and Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY (N.W.)
| | - Frank J Rybicki
- From the Applied Imaging Science Laboratory, Department of Radiology (D.M., A.I., A.A.G., T.C., K.K.K., E.G., F.J.R.), and Division of Plastic Surgery, Department of Surgery (E.J.C., B.P.), Brigham and Women's Hospital, Boston, Mass; 3D Medical Applications Center, Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Md (P.L., V.B.H., G.T.G.); Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Medical Center, New York, NY (N.W.); and Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY (N.W.)
| |
Collapse
|