1
|
Zheng S, Carugo D, Mosayyebi A, Turney B, Burkhard F, Lange D, Obrist D, Waters S, Clavica F. Fluid mechanical modeling of the upper urinary tract. WIREs Mech Dis 2021; 13:e1523. [PMID: 34730288 DOI: 10.1002/wsbm.1523] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/20/2022]
Abstract
The upper urinary tract (UUT) consists of kidneys and ureters, and is an integral part of the human urogenital system. Yet malfunctioning and complications of the UUT can happen at all stages of life, attributed to reasons such as congenital anomalies, urinary tract infections, urolithiasis and urothelial cancers, all of which require urological interventions and significantly compromise patients' quality of life. Therefore, many models have been developed to address the relevant scientific and clinical challenges of the UUT. Of all approaches, fluid mechanical modeling serves a pivotal role and various methods have been employed to develop physiologically meaningful models. In this article, we provide an overview on the historical evolution of fluid mechanical models of UUT that utilize theoretical, computational, and experimental approaches. Descriptions of the physiological functionality of each component are also given and the mechanical characterizations associated with the UUT are provided. As such, it is our aim to offer a brief summary of the current knowledge of the subject, and provide a comprehensive introduction for engineers, scientists, and clinicians who are interested in the field of fluid mechanical modeling of UUT. This article is categorized under: Cancer > Biomedical Engineering Infectious Diseases > Biomedical Engineering Reproductive System Diseases > Biomedical Engineering.
Collapse
Affiliation(s)
- Shaokai Zheng
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Dario Carugo
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, London, UK
| | - Ali Mosayyebi
- Bioengineering Sciences, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - Ben Turney
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Fiona Burkhard
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dirk Lange
- The Stone Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dominik Obrist
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Sarah Waters
- Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford, UK
| | - Francesco Clavica
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
A Microfluidic-Based Investigation of Bacterial Attachment in Ureteral Stents. MICROMACHINES 2020; 11:mi11040408. [PMID: 32295085 PMCID: PMC7231375 DOI: 10.3390/mi11040408] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/24/2022]
Abstract
Obstructions of the ureter lumen can originate from intrinsic or extrinsic factors, such as kidney stones, tumours, or strictures. These can affect the physiological flow of urine from the kidneys to the bladder, potentially causing infection, pain, and kidney failure. To overcome these complications, ureteral stents are often deployed clinically in order to temporarily re-establish urinary flow. Despite their clinical benefits, stents are prone to encrustation and biofilm formation that lead to reduced quality of life for patients; however, the mechanisms underlying the formation of crystalline biofilms in stents are not yet fully understood. In this study, we developed microfluidic-based devices replicating the urodynamic field within different configurations of an occluded and stented ureter. We employed computational fluid dynamic simulations to characterise the flow dynamic field within these models and investigated bacterial attachment (Pseudomonas fluorescens) by means of crystal violet staining and fluorescence microscopy. We identified the presence of hydrodynamic cavities in the vicinity of a ureteric occlusion, which were characterised by low levels of wall shear stress (WSS < 40 mPa), and observed that initiation of bacterial attachment occurred in these specific regions of the stented ureter. Notably, the bacterial coverage area was directly proportional to the number of cavities present in the model. Fluorescence microscopy confirmed that the number density of bacteria was greater within cavities (3 bacteria·mm-2) when compared to side-holes of the stent (1 bacterium·mm-2) or its luminal surface (0.12·bacteria mm-2). These findings informed the design of a novel technological solution against bacterial attachment, which reduces the extent of cavity flow and increases wall shear stress over the stent's surface.
Collapse
|