Kim Y, Rim J, Kim SM, Yun BL, Park SY, Ahn HS, Kim B, Jang M. False-negative results on computer-aided detection software in preoperative automated breast ultrasonography of breast cancer patients.
Ultrasonography 2020;
40:83-92. [PMID:
32422696 PMCID:
PMC7758101 DOI:
10.14366/usg.19076]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/24/2020] [Indexed: 01/19/2023] Open
Abstract
Purpose
The purpose of this study was to measure the cancer detection rate of computer-aided detection (CAD) software in preoperative automated breast ultrasonography (ABUS) of breast cancer patients and to determine the characteristics associated with false-negative outcomes.
Methods
A total of 129 index lesions (median size, 1.7 cm; interquartile range, 1.2 to 2.4 cm) from 129 consecutive patients (mean age±standard deviation, 53.4±11.8 years) who underwent preoperative ABUS from December 2017 to February 2018 were assessed. An index lesion was defined as a breast cancer confirmed by ultrasonography (US)-guided core needle biopsy. The detection rate of the index lesions, positive predictive value (PPV), and false-positive rate (FPR) of the CAD software were measured. Subgroup analysis was performed to identify clinical and US findings associated with false-negative outcomes.
Results
The detection rate of the CAD software was 0.84 (109 of 129; 95% confidence interval, 0.77 to 0.90). The PPV and FPR were 0.41 (221 of 544; 95% CI, 0.36 to 0.45) and 0.45 (174 of 387; 95% CI, 0.40 to 0.50), respectively. False-negative outcomes were more frequent in asymptomatic patients (P<0.001) and were associated with the following US findings: smaller size (P=0.001), depth in the posterior third (P=0.002), angular or indistinct margin (P<0.001), and absence of architectural distortion (P<0.001).
Conclusion
The CAD software showed a promising detection rate of breast cancer. However, radiologists should judge whether CAD software-marked lesions are true- or false-positive lesions, considering its low PPV and high FPR. Moreover, it would be helpful for radiologists to consider the characteristics associated with false-negative outcomes when reading ABUS with CAD.
Collapse