1
|
Design of a flexible robot toward transbronchial lung biopsy. ROBOTICA 2022. [DOI: 10.1017/s0263574722001345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Transbronchial lung biopsy is an effective and less-invasive treatment for the early diagnosis of lung cancer. However, the limited dexterity of existing endoscopic instruments and the complexity of bronchial access prevent the application of such procedures mainly for biopsy and diagnosis. This paper proposes a flexible robot for transbronchial lung biopsy with a cable-driven mechanism-based flexible manipulator. The robotic system of transbronchial lung biopsy is presented in detail, including the snake-bone end effector, the flexible catheters and the actuation unit. The kinematic analysis of the snake-bone end effector is conducted for the master-slave control. The experimental results show that the end effector reaches the target nodule through a narrow and tortuous pathway in a bronchial model. In conclusion, the proposed robotic system contributes to the field of advanced endoscopic surgery with high flexibility and controllability.
Collapse
|
2
|
Alqahtani A. Application of Artificial Intelligence in Discovery and Development of Anticancer and Antidiabetic Therapeutic Agents. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6201067. [PMID: 35509623 PMCID: PMC9060979 DOI: 10.1155/2022/6201067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/17/2022] [Accepted: 04/05/2022] [Indexed: 11/18/2022]
Abstract
Spectacular developments in molecular and cellular biology have led to important discoveries in cancer research. Despite cancer is one of the major causes of morbidity and mortality globally, diabetes is one of the most leading sources of group of disorders. Artificial intelligence (AI) has been considered the fourth industrial revolution machine. The most major hurdles in drug discovery and development are the time and expenditures required to sustain the drug research pipeline. Large amounts of data can be explored and generated by AI, which can then be converted into useful knowledge. Because of this, the world's largest drug companies have already begun to use AI in their drug development research. In the present era, AI has a huge amount of potential for the rapid discovery and development of new anticancer drugs. Clinical studies, electronic medical records, high-resolution medical imaging, and genomic assessments are just a few of the tools that could aid drug development. Large data sets are available to researchers in the pharmaceutical and medical fields, which can be analyzed by advanced AI systems. This review looked at how computational biology and AI technologies may be utilized in cancer precision drug development by combining knowledge of cancer medicines, drug resistance, and structural biology. This review also highlighted a realistic assessment of the potential for AI in understanding and managing diabetes.
Collapse
Affiliation(s)
- Amal Alqahtani
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, 31541, Saudi Arabia
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia
| |
Collapse
|
3
|
Liang G, Fan W, Luo H, Zhu X. The emerging roles of artificial intelligence in cancer drug development and precision therapy. Biomed Pharmacother 2020; 128:110255. [DOI: 10.1016/j.biopha.2020.110255] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/22/2020] [Accepted: 05/10/2020] [Indexed: 12/12/2022] Open
|
4
|
A mapping study of ensemble classification methods in lung cancer decision support systems. Med Biol Eng Comput 2020; 58:2177-2193. [PMID: 32621068 DOI: 10.1007/s11517-020-02223-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 06/25/2020] [Indexed: 10/23/2022]
Abstract
Achieving a high level of classification accuracy in medical datasets is a capital need for researchers to provide effective decision systems to assist doctors in work. In many domains of artificial intelligence, ensemble classification methods are able to improve the performance of single classifiers. This paper reports the state of the art of ensemble classification methods in lung cancer detection. We have performed a systematic mapping study to identify the most interesting papers concerning this topic. A total of 65 papers published between 2000 and 2018 were selected after an automatic search in four digital libraries and a careful selection process. As a result, it was observed that diagnosis was the task most commonly studied; homogeneous ensembles and decision trees were the most frequently adopted for constructing ensembles; and the majority voting rule was the predominant combination rule. Few studies considered the parameter tuning of the techniques used. These findings open several perspectives for researchers to enhance lung cancer research by addressing the identified gaps, such as investigating different classification methods, proposing other heterogeneous ensemble methods, and using new combination rules. Graphical abstract Main features of the mapping study performed in ensemble classification methods applied on lung cancer decision support systems.
Collapse
|
5
|
Xiao N, Qiang Y, Zia MB, Wang S, Lian J. Ensemble classification for predicting the malignancy level of pulmonary nodules on chest computed tomography images. Oncol Lett 2020; 20:401-408. [PMID: 32537025 DOI: 10.3892/ol.2020.11576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 03/13/2020] [Indexed: 12/24/2022] Open
Abstract
Early identification and classification of pulmonary nodules are essential for improving the survival rates of individuals with lung cancer and are considered to be key requirements for computer-assisted diagnosis. To address this topic, the present study proposed a method for predicting the malignant phenotype of pulmonary nodules based on weighted voting rules. This method used the pulmonary nodule regions of interest as the input data and extracted the features of the pulmonary nodules using the Denoising Auto Encoder, ResNet-18. Moreover, the software also modifies texture and shape features to assess the malignant phenotype of the pulmonary nodules. Based on their classification accuracy (Acc), the different classifiers were assigned to different weights. Finally, an integrated classifier was obtained to score the malignant phenotype of the pulmonary nodules. The present study included training and testing experiments conducted by extracting the corresponding lung nodule image data from the Lung Image Database Consortium-Image Database Resource Initiative. The results of the present study indicated a final classification Acc of 93.10±2.4%, demonstrating the feasibility and effectiveness of the proposed method. This method includes the powerful feature extraction ability of deep learning combined with the ability to use traditional features in image representation.
Collapse
Affiliation(s)
- Ning Xiao
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, Shanxi 030600, P.R. China
| | - Yan Qiang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, Shanxi 030600, P.R. China
| | - Muhammad Bilal Zia
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, Shanxi 030600, P.R. China
| | - Sanhu Wang
- Department of Computer Science and Technology, Lvliang University, Lvliang, Shanxi 033000, P.R. China
| | - Jianhong Lian
- Department of Thoracic Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi 030000, P.R. China
| |
Collapse
|
6
|
Hosni M, Carrillo-de-Gea JM, Idri A, Fernandez-Aleman JL, Garcia-Berna JA. Using ensemble classification methods in lung cancer disease. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:1367-1370. [PMID: 31946147 DOI: 10.1109/embc.2019.8857435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This paper presents an overview of the use of ensemble classification methods in the lung cancer disease. An analysis is carried out according to seven aspects: publication trends, channels and venues; medical tasks tackled; ensemble types proposed; single techniques used to construct the ensemble methods; rules used to draw the output of the ensemble; datasets used to build and evaluate the ensemble methods; and tools used. The application of ensemble methods in lung cancer disease started in 2003. The diagnosis task was the most tackled one by researchers. Furthermore, the homogeneous ensembles were the most frequent in the literature, and decision tree techniques were the most adopted ones for constructing ensembles. Several datasets related to the lung cancer disease were used to build and assess the ensemble methods. The most used tool was Weka. To conclude, some recommendations for future research are: tackle the medical tasks not investigated in the literature by means of ensemble methods; investigate other classification methods; propose other heterogeneous ensemble methods; and use other combination rules.
Collapse
|
7
|
Wang Q, Shen F, Shen L, Huang J, Sheng W. Lung Nodule Detection in CT Images Using a Raw Patch-Based Convolutional Neural Network. J Digit Imaging 2019; 32:971-979. [PMID: 31062113 PMCID: PMC6841817 DOI: 10.1007/s10278-019-00221-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Remarkable progress has been made in image classification and segmentation, due to the recent study of deep convolutional neural networks (CNNs). To solve the similar problem of diagnostic lung nodule detection in low-dose computed tomography (CT) scans, we propose a new Computer-Aided Detection (CAD) system using CNNs and CT image segmentation techniques. Unlike former studies focusing on the classification of malignant nodule types or relying on prior image processing, in this work, we put raw CT image patches directly in CNNs to reduce the complexity of the system. Specifically, we split each CT image into several patches, which are divided into 6 types consisting of 3 nodule types and 3 non-nodule types. We compare the performance of ResNet with different CNNs architectures on CT images from a publicly available dataset named the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI). Results show that our best model reaches a high detection sensitivity of 92.8% with 8 false positives per scan (FPs/scan). Compared with related work, our work obtains a state-of-the-art effect.
Collapse
Affiliation(s)
- Qin Wang
- Shanghai Jiao Tong University, Shanghai, 201100, China
| | - Fengyi Shen
- Shanghai Jiao Tong University, Shanghai, 201100, China
| | - Linyao Shen
- Shanghai Jiao Tong University, Shanghai, 201100, China
| | - Jia Huang
- Shanghai Chest Hospital, Shanghai, 200030, China
| | | |
Collapse
|
8
|
Wang X, Mao K, Wang L, Yang P, Lu D, He P. An Appraisal of Lung Nodules Automatic Classification Algorithms for CT Images. SENSORS (BASEL, SWITZERLAND) 2019; 19:E194. [PMID: 30621101 PMCID: PMC6338921 DOI: 10.3390/s19010194] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/28/2018] [Accepted: 12/31/2018] [Indexed: 12/23/2022]
Abstract
Lung cancer is one of the most deadly diseases around the world representing about 26% of all cancers in 2017. The five-year cure rate is only 18% despite great progress in recent diagnosis and treatment. Before diagnosis, lung nodule classification is a key step, especially since automatic classification can help clinicians by providing a valuable opinion. Modern computer vision and machine learning technologies allow very fast and reliable CT image classification. This research area has become very hot for its high efficiency and labor saving. The paper aims to draw a systematic review of the state of the art of automatic classification of lung nodules. This research paper covers published works selected from the Web of Science, IEEEXplore, and DBLP databases up to June 2018. Each paper is critically reviewed based on objective, methodology, research dataset, and performance evaluation. Mainstream algorithms are conveyed and generic structures are summarized. Our work reveals that lung nodule classification based on deep learning becomes dominant for its excellent performance. It is concluded that the consistency of the research objective and integration of data deserves more attention. Moreover, collaborative works among developers, clinicians, and other parties should be strengthened.
Collapse
Affiliation(s)
- Xinqi Wang
- School of Software, Northeastern University, Shenyang 110004, China.
| | - Keming Mao
- School of Software, Northeastern University, Shenyang 110004, China.
| | - Lizhe Wang
- Norman Bethune Health Science Center of Jilin University, No. 2699 Qianjin Street, Changchun 130012, China.
| | - Peiyi Yang
- School of Software, Northeastern University, Shenyang 110004, China.
| | - Duo Lu
- School of Software, Northeastern University, Shenyang 110004, China.
| | - Ping He
- School of Computer Science and Engineering, Northeastern University, Shenyang 110004, China.
| |
Collapse
|
9
|
3D multi-view convolutional neural networks for lung nodule classification. PLoS One 2017; 12:e0188290. [PMID: 29145492 PMCID: PMC5690636 DOI: 10.1371/journal.pone.0188290] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 10/11/2017] [Indexed: 12/23/2022] Open
Abstract
The 3D convolutional neural network (CNN) is able to make full use of the spatial 3D context information of lung nodules, and the multi-view strategy has been shown to be useful for improving the performance of 2D CNN in classifying lung nodules. In this paper, we explore the classification of lung nodules using the 3D multi-view convolutional neural networks (MV-CNN) with both chain architecture and directed acyclic graph architecture, including 3D Inception and 3D Inception-ResNet. All networks employ the multi-view-one-network strategy. We conduct a binary classification (benign and malignant) and a ternary classification (benign, primary malignant and metastatic malignant) on Computed Tomography (CT) images from Lung Image Database Consortium and Image Database Resource Initiative database (LIDC-IDRI). All results are obtained via 10-fold cross validation. As regards the MV-CNN with chain architecture, results show that the performance of 3D MV-CNN surpasses that of 2D MV-CNN by a significant margin. Finally, a 3D Inception network achieved an error rate of 4.59% for the binary classification and 7.70% for the ternary classification, both of which represent superior results for the corresponding task. We compare the multi-view-one-network strategy with the one-view-one-network strategy. The results reveal that the multi-view-one-network strategy can achieve a lower error rate than the one-view-one-network strategy.
Collapse
|
10
|
Learning Lung Nodule Malignancy Likelihood from Radiologist Annotations or Diagnosis Data. J Med Biol Eng 2017. [DOI: 10.1007/s40846-017-0317-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Classification of nucleotide sequences for quality assessment using logistic regression and decision tree approaches. Neural Comput Appl 2017. [DOI: 10.1007/s00521-017-2960-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Automatic Estimation of Osteoporotic Fracture Cases by Using Ensemble Learning Approaches. J Med Syst 2015; 40:61. [DOI: 10.1007/s10916-015-0413-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/17/2015] [Indexed: 10/22/2022]
|