1
|
Cai GW, Liu YB, Feng QJ, Liang RH, Zeng QS, Deng Y, Yang W. Semi-Supervised Segmentation of Interstitial Lung Disease Patterns from CT Images via Self-Training with Selective Re-Training. Bioengineering (Basel) 2023; 10:830. [PMID: 37508857 PMCID: PMC10375953 DOI: 10.3390/bioengineering10070830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Accurate segmentation of interstitial lung disease (ILD) patterns from computed tomography (CT) images is an essential prerequisite to treatment and follow-up. However, it is highly time-consuming for radiologists to pixel-by-pixel segment ILD patterns from CT scans with hundreds of slices. Consequently, it is hard to obtain large amounts of well-annotated data, which poses a huge challenge for data-driven deep learning-based methods. To alleviate this problem, we propose an end-to-end semi-supervised learning framework for the segmentation of ILD patterns (ESSegILD) from CT images via self-training with selective re-training. The proposed ESSegILD model is trained using a large CT dataset with slice-wise sparse annotations, i.e., only labeling a few slices in each CT volume with ILD patterns. Specifically, we adopt a popular semi-supervised framework, i.e., Mean-Teacher, that consists of a teacher model and a student model and uses consistency regularization to encourage consistent outputs from the two models under different perturbations. Furthermore, we propose introducing the latest self-training technique with a selective re-training strategy to select reliable pseudo-labels generated by the teacher model, which are used to expand training samples to promote the student model during iterative training. By leveraging consistency regularization and self-training with selective re-training, our proposed ESSegILD can effectively utilize unlabeled data from a partially annotated dataset to progressively improve the segmentation performance. Experiments are conducted on a dataset of 67 pneumonia patients with incomplete annotations containing over 11,000 CT images with eight different lung patterns of ILDs, with the results indicating that our proposed method is superior to the state-of-the-art methods.
Collapse
Affiliation(s)
- Guang-Wei Cai
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Yun-Bi Liu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Qian-Jin Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Rui-Hong Liang
- Department of Medical Imaging Center, Nanfang Hospital of Southern Medical University, Guangzhou 510515, China
| | - Qing-Si Zeng
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yu Deng
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Wei Yang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
2
|
Abdou MA. Literature review: efficient deep neural networks techniques for medical image analysis. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-06960-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
3
|
Abstract
OBJECTIVES The objective of this study is to assess the performance of a computer-aided diagnosis (CAD) system (INTACT system) for the automatic classification of high-resolution computed tomography images into 4 radiological diagnostic categories and to compare this with the performance of radiologists on the same task. MATERIALS AND METHODS For the comparison, a total of 105 cases of pulmonary fibrosis were studied (54 cases of nonspecific interstitial pneumonia and 51 cases of usual interstitial pneumonia). All diagnoses were interstitial lung disease board consensus diagnoses (radiologically or histologically proven cases) and were retrospectively selected from our database. Two subspecialized chest radiologists made a consensual ground truth radiological diagnosis, according to the Fleischner Society recommendations. A comparison analysis was performed between the INTACT system and 2 other radiologists with different years of experience (readers 1 and 2). The INTACT system consists of a sequential pipeline in which first the anatomical structures of the lung are segmented, then the various types of pathological lung tissue are identified and characterized, and this information is then fed to a random forest classifier able to recommend a radiological diagnosis. RESULTS Reader 1, reader 2, and INTACT achieved similar accuracy for classifying pulmonary fibrosis into the original 4 categories: 0.6, 0.54, and 0.56, respectively, with P > 0.45. The INTACT system achieved an F-score (harmonic mean for precision and recall) of 0.56, whereas the 2 readers, on average, achieved 0.57 (P = 0.991). For the pooled classification (2 groups, with and without the need for biopsy), reader 1, reader 2, and CAD had similar accuracies of 0.81, 0.70, and 0.81, respectively. The F-score was again similar for the CAD system and the radiologists. The CAD system and the average reader reached F-scores of 0.80 and 0.79 (P = 0.898). CONCLUSIONS We found that a computer-aided detection algorithm based on machine learning was able to classify idiopathic pulmonary fibrosis with similar accuracy to a human reader.
Collapse
|
4
|
Ma J, Song Y, Tian X, Hua Y, Zhang R, Wu J. Survey on deep learning for pulmonary medical imaging. Front Med 2019; 14:450-469. [PMID: 31840200 DOI: 10.1007/s11684-019-0726-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/12/2019] [Indexed: 12/27/2022]
Abstract
As a promising method in artificial intelligence, deep learning has been proven successful in several domains ranging from acoustics and images to natural language processing. With medical imaging becoming an important part of disease screening and diagnosis, deep learning-based approaches have emerged as powerful techniques in medical image areas. In this process, feature representations are learned directly and automatically from data, leading to remarkable breakthroughs in the medical field. Deep learning has been widely applied in medical imaging for improved image analysis. This paper reviews the major deep learning techniques in this time of rapid evolution and summarizes some of its key contributions and state-of-the-art outcomes. The topics include classification, detection, and segmentation tasks on medical image analysis with respect to pulmonary medical images, datasets, and benchmarks. A comprehensive overview of these methods implemented on various lung diseases consisting of pulmonary nodule diseases, pulmonary embolism, pneumonia, and interstitial lung disease is also provided. Lastly, the application of deep learning techniques to the medical image and an analysis of their future challenges and potential directions are discussed.
Collapse
Affiliation(s)
| | - Yang Song
- Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, 116033, China
| | - Xi Tian
- InferVision, Beijing, 100020, China
| | | | | | - Jianlin Wu
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China.
| |
Collapse
|
5
|
Choudhary P, Hazra A. Chest disease radiography in twofold: using convolutional neural networks and transfer learning. EVOLVING SYSTEMS 2019. [DOI: 10.1007/s12530-019-09316-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Xu R, Cong Z, Ye X, Hirano Y, Kido S, Gyobu T, Kawata Y, Honda O, Tomiyama N. Pulmonary Textures Classification via a Multi-Scale Attention Network. IEEE J Biomed Health Inform 2019; 24:2041-2052. [PMID: 31689221 DOI: 10.1109/jbhi.2019.2950006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Precise classification of pulmonary textures is crucial to develop a computer aided diagnosis (CAD) system of diffuse lung diseases (DLDs). Although deep learning techniques have been applied to this task, the classification performance is not satisfied for clinical requirements, since commonly-used deep networks built by stacking convolutional blocks are not able to learn discriminative feature representation to distinguish complex pulmonary textures. For addressing this problem, we design a multi-scale attention network (MSAN) architecture comprised by several stacked residual attention modules followed by a multi-scale fusion module. Our deep network can not only exploit powerful information on different scales but also automatically select optimal features for more discriminative feature representation. Besides, we develop visualization techniques to make the proposed deep model transparent for humans. The proposed method is evaluated by using a large dataset. Experimental results show that our method has achieved the average classification accuracy of 94.78% and the average f-value of 0.9475 in the classification of 7 categories of pulmonary textures. Besides, visualization results intuitively explain the working behavior of the deep network. The proposed method has achieved the state-of-the-art performance to classify pulmonary textures on high resolution CT images.
Collapse
|
7
|
Yang Y, Feng X, Chi W, Li Z, Duan W, Liu H, Liang W, Wang W, Chen P, He J, Liu B. Deep learning aided decision support for pulmonary nodules diagnosing: a review. J Thorac Dis 2018; 10:S867-S875. [PMID: 29780633 DOI: 10.21037/jtd.2018.02.57] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Deep learning techniques have recently emerged as promising decision supporting approaches to automatically analyze medical images for different clinical diagnosing purposes. Diagnosing of pulmonary nodules by using computer-assisted diagnosing has received considerable theoretical, computational, and empirical research work, and considerable methods have been developed for detection and classification of pulmonary nodules on different formats of images including chest radiographs, computed tomography (CT), and positron emission tomography in the past five decades. The recent remarkable and significant progress in deep learning for pulmonary nodules achieved in both academia and the industry has demonstrated that deep learning techniques seem to be promising alternative decision support schemes to effectively tackle the central issues in pulmonary nodules diagnosing, including feature extraction, nodule detection, false-positive reduction, and benign-malignant classification for the huge volume of chest scan data. The main goal of this investigation is to provide a comprehensive state-of-the-art review of the deep learning aided decision support for pulmonary nodules diagnosing. As far as the authors know, this is the first time that a review is devoted exclusively to deep learning techniques for pulmonary nodules diagnosing.
Collapse
Affiliation(s)
- Yixin Yang
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyi Feng
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhao Chi
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengyang Li
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenzhe Duan
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiping Liu
- PET/CT Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Wei Wang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Ping Chen
- PET/CT Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Bo Liu
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
8
|
Anthimopoulos M, Christodoulidis S, Ebner L, Geiser T, Christe A, Mougiakakou S. Semantic Segmentation of Pathological Lung Tissue With Dilated Fully Convolutional Networks. IEEE J Biomed Health Inform 2018; 23:714-722. [PMID: 29993791 DOI: 10.1109/jbhi.2018.2818620] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Early and accurate diagnosis of interstitial lung diseases (ILDs) is crucial for making treatment decisions, but can be challenging even for experienced radiologists. The diagnostic procedure is based on the detection and recognition of the different ILD pathologies in thoracic CT scans, yet their manifestation often appears similar. In this study, we propose the use of a deep purely convolutional neural network for the semantic segmentation of ILD patterns, as the basic component of a computer aided diagnosis system for ILDs. The proposed CNN, which consists of convolutional layers with dilated filters, takes as input a lung CT image of arbitrary size and outputs the corresponding label map. We trained and tested the network on a data set of 172 sparsely annotated CT scans, within a cross-validation scheme. The training was performed in an end-to-end and semisupervised fashion, utilizing both labeled and nonlabeled image regions. The experimental results show significant performance improvement with respect to the state of the art.
Collapse
|
9
|
Wang Q, Zheng Y, Yang G, Jin W, Chen X, Yin Y. Multiscale Rotation-Invariant Convolutional Neural Networks for Lung Texture Classification. IEEE J Biomed Health Inform 2017; 22:184-195. [PMID: 28333649 DOI: 10.1109/jbhi.2017.2685586] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We propose a new multiscale rotation-invariant convolutional neural network (MRCNN) model for classifying various lung tissue types on high-resolution computed tomography. MRCNN employs Gabor-local binary pattern that introduces a good property in image analysis-invariance to image scales and rotations. In addition, we offer an approach to deal with the problems caused by imbalanced number of samples between different classes in most of the existing works, accomplished by changing the overlapping size between the adjacent patches. Experimental results on a public interstitial lung disease database show a superior performance of the proposed method to state of the art.
Collapse
|
10
|
Christodoulidis S, Anthimopoulos M, Ebner L, Christe A, Mougiakakou S. Multisource Transfer Learning With Convolutional Neural Networks for Lung Pattern Analysis. IEEE J Biomed Health Inform 2016; 21:76-84. [PMID: 28114048 DOI: 10.1109/jbhi.2016.2636929] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Early diagnosis of interstitial lung diseases is crucial for their treatment, but even experienced physicians find it difficult, as their clinical manifestations are similar. In order to assist with the diagnosis, computer-aided diagnosis systems have been developed. These commonly rely on a fixed scale classifier that scans CT images, recognizes textural lung patterns, and generates a map of pathologies. In a previous study, we proposed a method for classifying lung tissue patterns using a deep convolutional neural network (CNN), with an architecture designed for the specific problem. In this study, we present an improved method for training the proposed network by transferring knowledge from the similar domain of general texture classification. Six publicly available texture databases are used to pretrain networks with the proposed architecture, which are then fine-tuned on the lung tissue data. The resulting CNNs are combined in an ensemble and their fused knowledge is compressed back to a network with the original architecture. The proposed approach resulted in an absolute increase of about 2% in the performance of the proposed CNN. The results demonstrate the potential of transfer learning in the field of medical image analysis, indicate the textural nature of the problem and show that the method used for training a network can be as important as designing its architecture.
Collapse
|
11
|
Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S. Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:1207-1216. [PMID: 26955021 DOI: 10.1109/tmi.2016.2535865] [Citation(s) in RCA: 478] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Automated tissue characterization is one of the most crucial components of a computer aided diagnosis (CAD) system for interstitial lung diseases (ILDs). Although much research has been conducted in this field, the problem remains challenging. Deep learning techniques have recently achieved impressive results in a variety of computer vision problems, raising expectations that they might be applied in other domains, such as medical image analysis. In this paper, we propose and evaluate a convolutional neural network (CNN), designed for the classification of ILD patterns. The proposed network consists of 5 convolutional layers with 2 × 2 kernels and LeakyReLU activations, followed by average pooling with size equal to the size of the final feature maps and three dense layers. The last dense layer has 7 outputs, equivalent to the classes considered: healthy, ground glass opacity (GGO), micronodules, consolidation, reticulation, honeycombing and a combination of GGO/reticulation. To train and evaluate the CNN, we used a dataset of 14696 image patches, derived by 120 CT scans from different scanners and hospitals. To the best of our knowledge, this is the first deep CNN designed for the specific problem. A comparative analysis proved the effectiveness of the proposed CNN against previous methods in a challenging dataset. The classification performance ( ~ 85.5%) demonstrated the potential of CNNs in analyzing lung patterns. Future work includes, extending the CNN to three-dimensional data provided by CT volume scans and integrating the proposed method into a CAD system that aims to provide differential diagnosis for ILDs as a supportive tool for radiologists.
Collapse
|
12
|
van Tulder G, de Bruijne M. Combining Generative and Discriminative Representation Learning for Lung CT Analysis With Convolutional Restricted Boltzmann Machines. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:1262-1272. [PMID: 26886968 DOI: 10.1109/tmi.2016.2526687] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The choice of features greatly influences the performance of a tissue classification system. Despite this, many systems are built with standard, predefined filter banks that are not optimized for that particular application. Representation learning methods such as restricted Boltzmann machines may outperform these standard filter banks because they learn a feature description directly from the training data. Like many other representation learning methods, restricted Boltzmann machines are unsupervised and are trained with a generative learning objective; this allows them to learn representations from unlabeled data, but does not necessarily produce features that are optimal for classification. In this paper we propose the convolutional classification restricted Boltzmann machine, which combines a generative and a discriminative learning objective. This allows it to learn filters that are good both for describing the training data and for classification. We present experiments with feature learning for lung texture classification and airway detection in CT images. In both applications, a combination of learning objectives outperformed purely discriminative or generative learning, increasing, for instance, the lung tissue classification accuracy by 1 to 8 percentage points. This shows that discriminative learning can help an otherwise unsupervised feature learner to learn filters that are optimized for classification.
Collapse
|
13
|
Enhanced Classification of Interstitial Lung Disease Patterns in HRCT Images Using Differential Lacunarity. BIOMED RESEARCH INTERNATIONAL 2015; 2015:672520. [PMID: 26798638 PMCID: PMC4700165 DOI: 10.1155/2015/672520] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/18/2015] [Indexed: 11/17/2022]
Abstract
The analysis and interpretation of high-resolution computed tomography (HRCT) images of the chest in the presence of interstitial lung disease (ILD) is a time-consuming task which requires experience. In this paper, a computer-aided diagnosis (CAD) scheme is proposed to assist radiologists in the differentiation of lung patterns associated with ILD and healthy lung parenchyma. Regions of interest were described by a set of texture attributes extracted using differential lacunarity (DLac) and classical methods of statistical texture analysis. The proposed strategy to compute DLac allowed a multiscale texture analysis, while maintaining sensitivity to small details. Support Vector Machines were employed to distinguish between lung patterns. Training and model selection were performed over a stratified 10-fold cross-validation (CV). Dimensional reduction was made based on stepwise regression (F-test, p value < 0.01) during CV. An accuracy of 95.8 ± 2.2% in the differentiation of normal lung pattern from ILD patterns and an overall accuracy of 94.5 ± 2.1% in a multiclass scenario revealed the potential of the proposed CAD in clinical practice. Experimental results showed that the performance of the CAD was improved by combining multiscale DLac with classical statistical texture analysis.
Collapse
|