1
|
Wireless power transfer endoscopy capsule – CAP4U. HEALTH AND TECHNOLOGY 2019. [DOI: 10.1007/s12553-018-0245-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
2
|
Abstract
Ingestible sensing capsules are fast emerging as a critical technology that has the ability to greatly impact health, nutrition, and clinical areas. These ingestible devices are noninvasive and hence are very attractive for customers. With widespread access to smart phones connected to the Internet, the data produced by this technology can be readily seen and reviewed online, and accessed by both users and physicians. The outputs provide invaluable information to reveal the state of gut health and disorders as well as the impact of food, medical supplements, and environmental changes on the gastrointestinal tract. One unique feature of such ingestible sensors is that their passage through the gut lumen gives them access to each individual organ of the gastrointestinal tract. Therefore, ingestible sensors offer the ability to gather images and monitor luminal fluid and the contents of each gut segment including electrolytes, enzymes, metabolites, hormones, and the microbial communities. As such, an incredible wealth of knowledge regarding the functionality and state of health of individuals through key gut biomarkers can be obtained. This Review presents an overview of the gut structure and discusses current and emerging digestible technologies. The text is an effort to provide a comprehensive overview of ingestible sensing capsules, from both a body physiology point of view as well as a technological view, and to detail the potential information that they can generate.
Collapse
Affiliation(s)
| | - Nam Ha
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Jian Zhen Ou
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Kyle J. Berean
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
3
|
Ciuti G, Caliò R, Camboni D, Neri L, Bianchi F, Arezzo A, Koulaouzidis A, Schostek S, Stoyanov D, Oddo CM, Magnani B, Menciassi A, Morino M, Schurr MO, Dario P. Frontiers of robotic endoscopic capsules: a review. JOURNAL OF MICRO-BIO ROBOTICS 2016; 11:1-18. [PMID: 29082124 PMCID: PMC5646258 DOI: 10.1007/s12213-016-0087-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/24/2016] [Accepted: 04/07/2016] [Indexed: 12/15/2022]
Abstract
Digestive diseases are a major burden for society and healthcare systems, and with an aging population, the importance of their effective management will become critical. Healthcare systems worldwide already struggle to insure quality and affordability of healthcare delivery and this will be a significant challenge in the midterm future. Wireless capsule endoscopy (WCE), introduced in 2000 by Given Imaging Ltd., is an example of disruptive technology and represents an attractive alternative to traditional diagnostic techniques. WCE overcomes conventional endoscopy enabling inspection of the digestive system without discomfort or the need for sedation. Thus, it has the advantage of encouraging patients to undergo gastrointestinal (GI) tract examinations and of facilitating mass screening programmes. With the integration of further capabilities based on microrobotics, e.g. active locomotion and embedded therapeutic modules, WCE could become the key-technology for GI diagnosis and treatment. This review presents a research update on WCE and describes the state-of-the-art of current endoscopic devices with a focus on research-oriented robotic capsule endoscopes enabled by microsystem technologies. The article also presents a visionary perspective on WCE potential for screening, diagnostic and therapeutic endoscopic procedures.
Collapse
Affiliation(s)
- Gastone Ciuti
- The BioRobotics Institute of Scuola Superiore Sant'Anna, Pontedera, Pisa 56025 Italy
| | - R Caliò
- The BioRobotics Institute of Scuola Superiore Sant'Anna, Pontedera, Pisa 56025 Italy
| | - D Camboni
- The BioRobotics Institute of Scuola Superiore Sant'Anna, Pontedera, Pisa 56025 Italy
| | - L Neri
- The BioRobotics Institute of Scuola Superiore Sant'Anna, Pontedera, Pisa 56025 Italy.,Ekymed S.r.l., Livorno, Italy
| | - F Bianchi
- The BioRobotics Institute of Scuola Superiore Sant'Anna, Pontedera, Pisa 56025 Italy
| | - A Arezzo
- Department of Surgical Disciplines, University of Torino, Torino, Italy
| | - A Koulaouzidis
- Endoscopy Unit, The Royal Infirmary of Edinburgh, Edinburgh, Scotland, UK
| | | | - D Stoyanov
- Centre for Medical Image Computing and the Department of Computer Science, University College London, London, UK
| | - C M Oddo
- The BioRobotics Institute of Scuola Superiore Sant'Anna, Pontedera, Pisa 56025 Italy
| | | | - A Menciassi
- The BioRobotics Institute of Scuola Superiore Sant'Anna, Pontedera, Pisa 56025 Italy
| | - M Morino
- Department of Surgical Disciplines, University of Torino, Torino, Italy
| | - M O Schurr
- Ovesco Endoscopy AG, Tübingen, Germany.,Steinbeis University Berlin, Berlin, Germany
| | - P Dario
- The BioRobotics Institute of Scuola Superiore Sant'Anna, Pontedera, Pisa 56025 Italy
| |
Collapse
|
4
|
Floor PA, Chávez-Santiago R, Brovoll S, Aardal Ø, Bergsland J, Grymyr OJHN, Halvorsen PS, Palomar R, Plettemeier D, Hamran SE, Ramstad TA, Balasingham I. In-Body to On-Body Ultrawideband Propagation Model Derived From Measurements in Living Animals. IEEE J Biomed Health Inform 2015; 19:938-48. [PMID: 25861089 DOI: 10.1109/jbhi.2015.2417805] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ultrawideband (UWB) radio technology for wireless implants has gained significant attention. UWB enables the fabrication of faster and smaller transceivers with ultralow power consumption, which may be integrated into more sophisticated implantable biomedical sensors and actuators. Nevertheless, the large path loss suffered by UWB signals propagating through inhomogeneous layers of biological tissues is a major hindering factor. For the optimal design of implantable transceivers, the accurate characterization of the UWB radio propagation in living biological tissues is indispensable. Channel measurements in phantoms and numerical simulations with digital anatomical models provide good initial insight into the expected path loss in complex propagation media like the human body, but they often fail to capture the effects of blood circulation, respiration, and temperature gradients of a living subject. Therefore, we performed UWB channel measurements within 1-6 GHz on two living porcine subjects because of the anatomical resemblance with an average human torso. We present for the first time, a path loss model derived from these in vivo measurements, which includes the frequency-dependent attenuation. The use of multiple on-body receiving antennas to combat the high propagation losses in implant radio channels was also investigated.
Collapse
|
5
|
Chávez-Santiago R, Garcia-Pardo C, Fornes-Leal A, Vallés-Lluch A, Vermeeren G, Joseph W, Balasingham I, Cardona N. Experimental Path Loss Models for In-Body Communications Within 2.36-2.5 GHz. IEEE J Biomed Health Inform 2015; 19:930-7. [PMID: 25838532 DOI: 10.1109/jbhi.2015.2418757] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biomedical implantable sensors transmitting a variety of physiological signals have been proven very useful in the management of chronic diseases. Currently, the vast majority of these in-body wireless sensors communicate in frequencies below 1 GHz. Although the radio propagation losses through biological tissues may be lower in such frequencies, e.g., the medical implant communication services band of 402 to 405 MHz, the maximal channel bandwidths allowed therein constrain the implantable devices to low data rate transmissions. Novel and more sophisticated wireless in-body sensors and actuators may require higher data rate communication interfaces. Therefore, the radio spectrum above 1 GHz for the use of wearable medical sensing applications should be considered for in-body applications too. Wider channel bandwidths and smaller antenna sizes may be obtained in frequency bands above 1 GHz at the expense of larger propagation losses. Therefore, in this paper, we present a phantom-based radio propagation study for the frequency bands of 2360 to 2400 MHz, which has been set aside for wearable body area network nodes, and the industrial, scientific, medical band of 2400 to 2483.5 MHz. Three different channel scenarios were considered for the propagation measurements: in-body to in-body, in-body to on-body, and in-body to off-body. We provide for the first time path loss formulas for all these cases.
Collapse
|