1
|
Gao J, Zhang Z, Yan G. Development of a Capsule Robot for Exploring the Colon. MICROMACHINES 2019; 10:E456. [PMID: 31284610 PMCID: PMC6680549 DOI: 10.3390/mi10070456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 11/16/2022]
Abstract
A tether-less inchworm-like capsule robot (ILCR) is promising to enable a non-invasive exploration of the colon, while existing ILCRs show barely satisfactory movement performance because the colon environment is nonstructural. In this current study, we develop an enhanced ILCR based on a design rule of maximizing the achievable periodic stroke and minimizing the body length, with the aim of improving movement performance. By designing an axial compact expanding mechanism (EM), employing a novel linear mechanism (LM), and integrating a hollow-cylinder-like power source based on wireless power transmission (WPT), the enhanced ILCR achieves a periodic stroke of 38 mm within a small body length of 33 mm. Our experiments show that the EM and LM can work reliably in an ex-vivo colon with a lot of intestinal mucus, and the power source can safely supply a stable working voltage of 3.3 V even in the worst case. Being wirelessly controlled and powered, the enhanced ILCR shows satisfactory movement performance, with velocities of 15.8 cm/min, 12.1 cm/min, and 7.4 cm/min in a transparent tube, a tiled colon, and a suspended colon, respectively, promising to accomplish an exploration for the 1.5-m long colon within 30 min.
Collapse
Affiliation(s)
- Jinyang Gao
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China.
- Shanxi Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China.
| | - Zenglei Zhang
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
| | - Guozheng Yan
- Department of Instrument Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| |
Collapse
|
2
|
Ciuti G, Caliò R, Camboni D, Neri L, Bianchi F, Arezzo A, Koulaouzidis A, Schostek S, Stoyanov D, Oddo CM, Magnani B, Menciassi A, Morino M, Schurr MO, Dario P. Frontiers of robotic endoscopic capsules: a review. JOURNAL OF MICRO-BIO ROBOTICS 2016; 11:1-18. [PMID: 29082124 PMCID: PMC5646258 DOI: 10.1007/s12213-016-0087-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/24/2016] [Accepted: 04/07/2016] [Indexed: 12/15/2022]
Abstract
Digestive diseases are a major burden for society and healthcare systems, and with an aging population, the importance of their effective management will become critical. Healthcare systems worldwide already struggle to insure quality and affordability of healthcare delivery and this will be a significant challenge in the midterm future. Wireless capsule endoscopy (WCE), introduced in 2000 by Given Imaging Ltd., is an example of disruptive technology and represents an attractive alternative to traditional diagnostic techniques. WCE overcomes conventional endoscopy enabling inspection of the digestive system without discomfort or the need for sedation. Thus, it has the advantage of encouraging patients to undergo gastrointestinal (GI) tract examinations and of facilitating mass screening programmes. With the integration of further capabilities based on microrobotics, e.g. active locomotion and embedded therapeutic modules, WCE could become the key-technology for GI diagnosis and treatment. This review presents a research update on WCE and describes the state-of-the-art of current endoscopic devices with a focus on research-oriented robotic capsule endoscopes enabled by microsystem technologies. The article also presents a visionary perspective on WCE potential for screening, diagnostic and therapeutic endoscopic procedures.
Collapse
Affiliation(s)
- Gastone Ciuti
- The BioRobotics Institute of Scuola Superiore Sant'Anna, Pontedera, Pisa 56025 Italy
| | - R Caliò
- The BioRobotics Institute of Scuola Superiore Sant'Anna, Pontedera, Pisa 56025 Italy
| | - D Camboni
- The BioRobotics Institute of Scuola Superiore Sant'Anna, Pontedera, Pisa 56025 Italy
| | - L Neri
- The BioRobotics Institute of Scuola Superiore Sant'Anna, Pontedera, Pisa 56025 Italy.,Ekymed S.r.l., Livorno, Italy
| | - F Bianchi
- The BioRobotics Institute of Scuola Superiore Sant'Anna, Pontedera, Pisa 56025 Italy
| | - A Arezzo
- Department of Surgical Disciplines, University of Torino, Torino, Italy
| | - A Koulaouzidis
- Endoscopy Unit, The Royal Infirmary of Edinburgh, Edinburgh, Scotland, UK
| | | | - D Stoyanov
- Centre for Medical Image Computing and the Department of Computer Science, University College London, London, UK
| | - C M Oddo
- The BioRobotics Institute of Scuola Superiore Sant'Anna, Pontedera, Pisa 56025 Italy
| | | | - A Menciassi
- The BioRobotics Institute of Scuola Superiore Sant'Anna, Pontedera, Pisa 56025 Italy
| | - M Morino
- Department of Surgical Disciplines, University of Torino, Torino, Italy
| | - M O Schurr
- Ovesco Endoscopy AG, Tübingen, Germany.,Steinbeis University Berlin, Berlin, Germany
| | - P Dario
- The BioRobotics Institute of Scuola Superiore Sant'Anna, Pontedera, Pisa 56025 Italy
| |
Collapse
|