1
|
Rouvier T, Louessard A, Simonetti E, Hybois S, Bascou J, Pontonnier C, Pillet H, Sauret C. Manual wheelchair biomechanics while overcoming various environmental barriers: A systematic review. PLoS One 2022; 17:e0269657. [PMID: 35737733 PMCID: PMC9223621 DOI: 10.1371/journal.pone.0269657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 05/26/2022] [Indexed: 11/18/2022] Open
Abstract
During manual wheelchair (MWC) locomotion, the user's upper limbs are subject to heavy stresses and fatigue because the upper body is permanently engaged to propel the MWC. These stresses and fatigue vary according to the environmental barriers encountered outdoors along a given path. This study aimed at conducting a systematic review of the literature assessing the biomechanics of MWC users crossing various situations, which represent physical environmental barriers. Through a systematic search on PubMed, 34 articles were selected and classified according to the investigated environmental barriers: slope; cross-slope; curb; and ground type. For each barrier, biomechanical parameters were divided into four categories: spatiotemporal parameters; kinematics; kinetics; and muscle activity. All results from the different studies were gathered, including numerical data, and assessed with respect to the methodology used in each study. This review sheds light on the fact that certain situations (cross-slopes and curbs) or parameters (kinematics) have scarcely been studied, and that a wider set of situations should be studied. Five recommendations were made at the end of this review process to standardize the procedure when reporting materials, methods, and results for the study of biomechanics of any environmental barrier encountered in MWC locomotion: (i) effectively reporting barriers' lengths, grades, or heights; (ii) striving for standardization or a report of the approach conditions of the barrier, such as velocity, especially on curbs; (iii) reporting the configuration of the used MWC, and if it was fitted to the subject's morphology; (iv) reporting rotation sequences for the expression of moments and kinematics, and when used, the definition of the musculoskeletal model; lastly (v) when possible, reporting measurement uncertainties and model reconstruction errors.
Collapse
Affiliation(s)
- Théo Rouvier
- Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers Institute of Technology, Paris, France
| | - Aude Louessard
- Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers Institute of Technology, Paris, France
| | - Emeline Simonetti
- Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers Institute of Technology, Paris, France
- Centre d’Études et de Recherche sur l’Appareillage des Handicapés, Institution Nationale des Invalides, Créteil, France
| | - Samuel Hybois
- Complexité Innovation Activités Motrices et Sportives, Faculté des Sciences du Sport, Université Paris-Saclay, Orsay, France
| | - Joseph Bascou
- Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers Institute of Technology, Paris, France
- Centre d’Études et de Recherche sur l’Appareillage des Handicapés, Institution Nationale des Invalides, Créteil, France
| | - Charles Pontonnier
- Université de Rennes, Centre National de la Recherche Scientifique, Institut National de Recherche en Informatique et en Automatique, Institut de Recherche en Informatique et Systèmes Aléatoires–Unité Mixte de Recherche 6074, Rennes, France
| | - Hélène Pillet
- Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers Institute of Technology, Paris, France
| | - Christophe Sauret
- Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers Institute of Technology, Paris, France
- Centre d’Études et de Recherche sur l’Appareillage des Handicapés, Institution Nationale des Invalides, Créteil, France
| |
Collapse
|
2
|
Relationship Between Shoulder Pain and Joint Reaction Forces and Muscle Moments During 2 Speeds of Wheelchair Propulsion. J Appl Biomech 2022; 38:404-411. [DOI: 10.1123/jab.2022-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/31/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022]
Abstract
The purpose of this study was to determine shoulder joint reaction forces and muscle moments during 2 speeds (1.3 and 2.2 m/s) of wheelchair propulsion and to investigate the relationship between joints reaction forces, muscle moments, and shoulder pain. The measurements were obtained from 20 manual wheelchair users. A JR3 6-channel load sensor (±1% error) and a Qualisys system were used to record 3-dimensional pushrim kinetics and kinematics. A 3-dimensional inverse dynamic model was generated to compute joint kinetics. The results demonstrated significant differences in shoulder joint forces and moments (P < .01) between the 2 speeds of wheelchair propulsion. The greatest peak shoulder joint forces during the drive phase were anterior directed (Fy, 184.69 N), and the greatest joint moment was the shoulder flexion direction (flexion moment, 35.79 N·m) at 2.2 m/s. All the shoulder joint reaction forces and flexion moment were significantly (P < .05) related to shoulder pain index. The forces combined in superior and anterior direction found at the shoulder joint may contribute to the compression of subacromial structure and predispose manual wheelchair users to potential rotator cuff impingement syndrome.
Collapse
|
3
|
Herrera RR, Holloway C, Morgado Ramirez DZ, Zhang B, Cho Y. Breathing Biofeedback Relaxation Intervention for Wheelchair Users in City Navigation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:4575-4578. [PMID: 33019012 DOI: 10.1109/embc44109.2020.9176144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Manual wheelchair users experience numerous invisible barriers while navigating cities, often reporting how stressful journeys are. This stress affects a wheelchair user's quality of life. To alleviate such psychological burden, we propose a novel intervention strategy with a respiratory biofeedback interface which is designed to help users feel relaxed in urban navigation. We conducted a study in a real-world setting to explore its potential to provide real-time psychological support. From qualitative and quantitative analysis, we report on the strengths and weaknesses of the approach.
Collapse
|
4
|
Qi L, Ferguson-Pell M, Lu Y. The Effect of Manual Wheelchair Propulsion Speed on Users' Shoulder Muscle Coordination Patterns in Time-Frequency and Principal Component Analysis. IEEE Trans Neural Syst Rehabil Eng 2018; 27:60-65. [PMID: 30571642 DOI: 10.1109/tnsre.2018.2886826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A rehabilitation program for wheelchair users should be based on a thorough understanding of shoulder muscle coordination patterns. The objective of the study was to quantify the extent to which the muscle electromyographic (EMG) patterns vary with propulsion speed. A total of 11 wheelchair-dependent participants with a diagnosis of spina bifida or T6-T12 spinal cord injury volunteered for the study. Each participant performed a series of wheelchair propulsion bouts at 1m/s, 1.3 m/s, and 1.6m/s. EMG signals of 8 shoulder muscles as well as the physiological and kinetic variables were recorded. Propulsion at 1.6m/s generated significantly higher EMG intensities in biceps brachii, anterior deltoid, pectoralis major, and middle deltoid than at 1m/s and 1.3m/s. The combined wavelet and principal component analysis showed that the faster propulsion speed requires higher push muscle activity in the early push phase and in the phase transitions between alternating push and recovery. Training to strengthen the shoulder flexors to achieve smoother phase transitions could improve rehabilitation outcomes by increasing functional speed while lessening shoulder strain.
Collapse
|
5
|
Kholinne E, Zulkarnain RF, Sun YC, Lim S, Chun JM, Jeon IH. The different role of each head of the triceps brachii muscle in elbow extension. ACTA ORTHOPAEDICA ET TRAUMATOLOGICA TURCICA 2018; 52:201-205. [PMID: 29503079 PMCID: PMC6136322 DOI: 10.1016/j.aott.2018.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/19/2018] [Accepted: 02/11/2018] [Indexed: 12/23/2022]
Abstract
Objective The aim of this study was to investigate the functional role of each head of the triceps brachii muscle, depending on the angle of shoulder elevation, and to compare each muscle force and activity by using a virtual biomechanical simulator and surface electromyography. Methods Ten healthy participants (8 males and 2 females) were included in this study. The mean age was 29.2 years (23–45). Each participant performed elbow extension tasks in five different degrees (0, 45, 90, 135, and 180°) of shoulder elevation with three repetitions. Kinematics data and surface electromyography signal of each head of the triceps brachii were recorded. Recorded kinematics data were then applied to an inverse kinematics musculoskeletal modeling software function (OpenSim) to analyze the triceps brachii's muscle force. Correlation between muscle force, muscle activity, elbow extension, and shoulder elevation angle were compared and analyzed for each head of triceps brachii. Results At 0° shoulder elevation, the long head of the triceps brachii generates a significantly higher muscle force and muscle activation than the lateral and medial heads (p < 0.05). While at 90°, 135° and 180° shoulder elevation, the medial head of the triceps brachii showed a significantly higher muscle force than the long and the lateral heads (p < 0.05). Conclusions Each head of the triceps brachii has a different pattern of force and activity during different shoulder elevations. The long head contributes to elbow extension more at shoulder elevation and the medial head takes over at 90° and above of shoulder elevation. This study provides further understanding of triceps brachii's for clinicians and health trainers who need to investigate the functional role of the triceps brachii in detail.
Collapse
|
6
|
Holloway C, Heravi B, Barbareschi G, Nicholson S, Hailes S. Street rehab: Linking accessibility and rehabilitation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:3167-3170. [PMID: 28268980 DOI: 10.1109/embc.2016.7591401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
As part of the Accessible Routes from Crowdsourced Cloud Services project (ARCCS) we conducted a series of experiments using the ARCCS sensor to identify push style of wheelchair users. The aim of ARCCS is to make use of a set of well-calibrated sensors to establish a processing chain that then provides ground truth of known accuracy about location, the nature of the environment, and physiological effort. In this paper we focus on two classification problems 1) The push style employed by people as they push themselves and 2) Whether the person is being pushed by an attendant or pushing themselves (independent of push style). Solving the first enables us to develop a level of granularity to pushing classification which transcends rehabilitation and accessibility. The first problem was solved using a wrist-mounted ARCCS sensor, and the second using a wheel-mounted ARCCS sensor. Push styles were classified between semi-circular and arc styles in both indoor and outdoor environments with a high-decrees of precision and recall (>95%). The ARCCS sensor also proved capable of discerning attendant from self-propulsion with near perfect accuracy and recall, without the need for a body-worn sensor.
Collapse
|
7
|
Symonds A, Barbareschi G, Taylor S, Holloway C. A systematic review: the influence of real time feedback on wheelchair propulsion biomechanics. Disabil Rehabil Assist Technol 2017; 13:47-53. [PMID: 28102100 DOI: 10.1080/17483107.2016.1278472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Clinical guidelines recommend that, in order to minimize upper limb injury risk, wheelchair users adopt a semi-circular pattern with a slow cadence and a large push arc. OBJECTIVES To examine whether real time feedback can be used to influence manual wheelchair propulsion biomechanics. REVIEW METHODS Clinical trials and case series comparing the use of real time feedback against no feedback were included. A general review was performed and methodological quality assessed by two independent practitioners using the Downs and Black checklist. The review was completed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta Analyses (PRISMA) guidelines. RESULTS Six papers met the inclusion criteria. Selected studies involved 123 participants and analysed the effect of visual and, in one case, haptic feedback. Across the studies it was shown that participants were able to achieve significant changes in propulsion biomechanics, when provided with real time feedback. However, the effect of targeting a single propulsion variable might lead to unwanted alterations in other parameters. Methodological assessment identified weaknesses in external validity. CONCLUSIONS Visual feedback could be used to consistently increase push arc and decrease push rate, and may be the best focus for feedback training. Further investigation is required to assess such intervention during outdoor propulsion. Implications for Rehabilitation Upper limb pain and injuries are common secondary disorders that negatively affect wheelchair users' physical activity and quality of life. Clinical guidelines suggest that manual wheelchair users should aim to propel with a semi-circular pattern with low a push rate and large push arc in the range in order to minimise upper limbs' loading. Real time visual and haptic feedback are effective tools for improving propulsion biomechanics in both complete novices and experienced manual wheelchair users.
Collapse
Affiliation(s)
- Andrew Symonds
- a University College London Aspire Centre for Rehabilitation and Assistive Technology , London , UK
| | - Giulia Barbareschi
- b University College London, University College London Interaction Centre , London , UK
| | - Stephen Taylor
- c University College London Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital Stanmore , Brockley Hill , Stanmore , UK
| | - Catherine Holloway
- b University College London, University College London Interaction Centre , London , UK
| |
Collapse
|
8
|
Symonds A, Taylor SJ, Holloway C. Sensewheel: an adjunct to wheelchair skills training. Healthc Technol Lett 2016; 3:269-272. [PMID: 28008362 PMCID: PMC5168756 DOI: 10.1049/htl.2016.0056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/07/2016] [Indexed: 11/20/2022] Open
Abstract
The purpose of this Letter was to investigate the influence of real-time verbal feedback to optimise push arc during over ground manual wheelchair propulsion. Ten healthy non-wheelchair users pushed a manual wheelchair for a distance of 25 m on level paving, initially with no feedback and then with real-time verbal feedback aimed at controlling push arc within a range of 85°-100°. The real-time feedback was provided by a physiotherapist walking behind the wheelchair, viewing real-time data on a tablet personal computer received from the Sensewheel, a lightweight instrumented wheelchair wheel. The real-time verbal feedback enabled the participants to significantly increase their push arc. This increase in push arc resulted in a non-significant reduction in push rate and a significant increase in peak force application. The intervention enabled participants to complete the task at a higher mean velocity using significantly fewer pushes. This was achieved via a significant increase in the power generated during the push phase. This Letter identifies that a lightweight instrumented wheelchair wheel such as the Sensewheel is a useful adjunct to wheelchair skills training. Targeting the optimisation of push arc resulted in beneficial changes in propulsion technique.
Collapse
Affiliation(s)
- Andrew Symonds
- Centre for Rehabilitation Engineering and Assistive Technology, University College London, London HA7 4LP, UK
| | - Stephen J.G. Taylor
- Centre for Rehabilitation Engineering and Assistive Technology, University College London, London HA7 4LP, UK
| | - Catherine Holloway
- University College London Interaction Centre, University College London, London WC1E 6EA, UK
| |
Collapse
|
9
|
Blache Y, Creveaux T, Dumas R, Chèze L, Rogowski I. Glenohumeral contact force during flat and topspin tennis forehand drives. Sports Biomech 2016; 16:127-142. [PMID: 27595163 DOI: 10.1080/14763141.2016.1216585] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The primary role of the shoulder joint in tennis forehand drive is at the expense of the loadings undergone by this joint. Nevertheless, few studies investigated glenohumeral (GH) contact forces during forehand drives. The aim of this study was to investigate GH compressive and shearing forces during the flat and topspin forehand drives in advanced tennis players. 3D kinematics of flat and topspin forehand drives of 11 advanced tennis players were recorded. The Delft Shoulder and Elbow musculoskeletal model was implemented to assess the magnitude and orientation of GH contact forces during the forehand drives. The results showed no differences in magnitude and orientation of GH contact forces between the flat and topspin forehand drives. The estimated maximal GH contact force during the forward swing phase was 3573 ± 1383 N, which was on average 1.25 times greater than during the follow-through phase, and 5.8 times greater than during the backswing phase. Regardless the phase of the forehand drive, GH contact forces pointed towards the anterior-superior part of the glenoid therefore standing for shearing forces. Knowledge of GH contact forces during real sport tasks performed at high velocity may improve the understanding of various sport-specific adaptations and causative factors for shoulder problems.
Collapse
Affiliation(s)
- Yoann Blache
- a Inter-University Laboratory of Human Movement Biology , University Claude Bernard Lyon 1 , Lyon , France
| | - Thomas Creveaux
- a Inter-University Laboratory of Human Movement Biology , University Claude Bernard Lyon 1 , Lyon , France
| | - Raphaël Dumas
- b Biomechanics and Impact Mechanics Laboratory , University Claude Bernard Lyon 1 , Lyon , France
| | - Laurence Chèze
- b Biomechanics and Impact Mechanics Laboratory , University Claude Bernard Lyon 1 , Lyon , France
| | - Isabelle Rogowski
- a Inter-University Laboratory of Human Movement Biology , University Claude Bernard Lyon 1 , Lyon , France
| |
Collapse
|
10
|
James CJ, Amor JD, Holloway C, Kenney L. AART-BC: a sensor system for monitoring Assistive Technology use beyond the clinic. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2016:3151-3154. [PMID: 28268976 DOI: 10.1109/embc.2016.7591397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A wide range of assistive and rehabilitative technologies (ART) are available to assist with mobility and upper limb function. However, anecdotal evidence suggests many of the devices prescribed, or purchased, are either poorly used, or rejected entirely. This situation is costly, both for the healthcare provider and the user, and may be leading to secondary consequences, such as falls and/or social isolation. This paper reports on the development and initial feasibility testing of a system for monitoring when and how assistive devices are used outside of the clinic setting, and feeding this information to the device user themselves and/or prescribing clinician (where appropriate). Illustrative data from multiple time-synchronized device and body worn sensors are presented on a wheelchair user and a user of a "rollator" walking frame, moving along a walkway. Observation of the sensor data in both cases showed characteristic signatures corresponding to individual "pushes". In parallel with this work, other project partners are exploring clinician and patient data requirements, as well we sensor set acceptability The initial results highlight the potential for the approach and demonstrate the need for further work to reduce and optimize the sensor set.
Collapse
|