1
|
Escamilla-Nunez R, Michelini A, Andrysek J. Biofeedback Systems for Gait Rehabilitation of Individuals with Lower-Limb Amputation: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1628. [PMID: 32183338 PMCID: PMC7146745 DOI: 10.3390/s20061628] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2022]
Abstract
Individuals with lower-limb amputation often have gait deficits and diminished mobility function. Biofeedback systems have the potential to improve gait rehabilitation outcomes. Research on biofeedback has steadily increased in recent decades, representing the growing interest toward this topic. This systematic review highlights the methodological designs, main technical and clinical challenges, and evidence relating to the effectiveness of biofeedback systems for gait rehabilitation. This review provides insights for developing an effective, robust, and user-friendly wearable biofeedback system. The literature search was conducted on six databases and 31 full-text articles were included in this review. Most studies found biofeedback to be effective in improving gait. Biofeedback was most commonly concurrently provided and related to limb loading and symmetry ratios for stance or step time. Visual feedback was the most used modality, followed by auditory and haptic. Biofeedback must not be obtrusive and ideally provide a level of enjoyment to the user. Biofeedback appears to be most effective during the early stages of rehabilitation but presents some usability challenges when applied to the elderly. More research is needed on younger populations and higher amputation levels, understanding retention as well as the relationship between training intensity and performance.
Collapse
Affiliation(s)
- Rafael Escamilla-Nunez
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M4Y 1R5, Canada; (R.E.-N.); (A.M.)
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON M4G 1R8, Canada
| | - Alexandria Michelini
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M4Y 1R5, Canada; (R.E.-N.); (A.M.)
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON M4G 1R8, Canada
| | - Jan Andrysek
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M4Y 1R5, Canada; (R.E.-N.); (A.M.)
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON M4G 1R8, Canada
| |
Collapse
|
2
|
Brandt A, Wen Y, Liu M, Stallings J, Huang HH. Interactions Between Transfemoral Amputees and a Powered Knee Prosthesis During Load Carriage. Sci Rep 2017; 7:14480. [PMID: 29101394 PMCID: PMC5670174 DOI: 10.1038/s41598-017-14834-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/17/2017] [Indexed: 11/29/2022] Open
Abstract
Machines and humans become mechanically coupled when lower limb amputees walk with powered prostheses, but these two control systems differ in adaptability. We know little about how they interact when faced with real-world physical demands (e.g. carrying loads). Here, we investigated how each system (i.e. amputee and powered prosthesis) responds to changes in the prosthesis mechanics and gravitational load. Five transfemoral amputees walked with and without load (i.e. weighted backpack) and a powered knee prosthesis with two pre-programmed controller settings (i.e. for load and no load). We recorded subjects' kinematics, kinetics, and perceived exertion. Compared to the no load setting, the load setting reduced subjects' perceived exertion and intact-limb stance time when they carried load. When subjects did not carry load, their perceived exertion and gait performance did not significantly change with controller settings. Our results suggest transfemoral amputees could benefit from load-adaptive powered knee controllers, and controller adjustments affect amputees more when they walk with (versus without) load. Further understanding of the interaction between powered prostheses, amputee users, and various environments may allow researchers to expand the utility of prostheses beyond simple environments (e.g. firm level ground without load) that represent only a subset of real-world environments.
Collapse
Affiliation(s)
- Andrea Brandt
- University of North Carolina, Joint Department of Biomedical Engineering, Chapel Hill, Raleigh, 27514, USA
- North Carolina State University, Joint Department of Biomedical Engineering, Chapel Hill, Raleigh, 27695, USA
| | - Yue Wen
- University of North Carolina, Joint Department of Biomedical Engineering, Chapel Hill, Raleigh, 27514, USA
- North Carolina State University, Joint Department of Biomedical Engineering, Chapel Hill, Raleigh, 27695, USA
| | - Ming Liu
- University of North Carolina, Joint Department of Biomedical Engineering, Chapel Hill, Raleigh, 27514, USA
- North Carolina State University, Joint Department of Biomedical Engineering, Chapel Hill, Raleigh, 27695, USA
| | - Jonathan Stallings
- North Carolina State University, Department of Statistics, Raleigh, 27695, USA
| | - He Helen Huang
- University of North Carolina, Joint Department of Biomedical Engineering, Chapel Hill, Raleigh, 27514, USA.
- North Carolina State University, Joint Department of Biomedical Engineering, Chapel Hill, Raleigh, 27695, USA.
| |
Collapse
|