1
|
Zhong Z, Ou Y, Chen Y, Li P, Shi H, Lv D, Jia C, Shang T, Sun L, Yang R, Wang X, Guo W, Lv L. Reduced functional connectivity of the right dorsolateral prefrontal cortex at rest in obsessive-compulsive disorder. Brain Behav 2024; 14:e3333. [PMID: 38376021 PMCID: PMC10784187 DOI: 10.1002/brb3.3333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Neuroimaging studies have revealed the role of the right dorsolateral prefrontal cortex (DLPFC) in the neurobiological mechanism of obsessive-compulsive disorder (OCD). However, only a few studies have examined the functional connectivity (FC) pattern of the right DLPFC at rest in OCD. OBJECTIVE The aim of this research is to examine the FC patterns of the right DLPFC at rest in OCD. METHODS Twenty-eight medication-free patients with OCD and 20 healthy controls underwent resting-state functional magnetic resonance imaging. Seed-based FC and support vector machine (SVM) were used to analyze the imaging data. RESULTS The patients with OCD showed reduced FC values in the right middle temporal gyrus (MTG), right superior temporal gyrus, right ventral anterior cingulate cortex (vACC), and left Crus II. No brain regions showed a remarkable difference in FC values in patients with OCD after 8 weeks of medication treatment. The reduced right DLPFC-right MTG and right DLPFC-right vACC connectivities were correlated with the clinical symptoms of OCD. SVM results showed that reduced right DLPFC-right MTG connectivity at rest could predict the therapeutic response to OCD medication. CONCLUSIONS The findings highlight the important role of the right DLPFC in the pathophysiological mechanism of OCD.
Collapse
Affiliation(s)
- Zhaoxi Zhong
- Henan Key Laboratory of Biological PsychiatryThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangHenanChina
| | - Yangpan Ou
- National Clinical Research Center for Mental Disordersand Department of PsychiatryThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Yunhui Chen
- Department of PsychiatryQiqihar Medical UniversityQiqiharHeilongjiangChina
| | - Ping Li
- Department of PsychiatryQiqihar Medical UniversityQiqiharHeilongjiangChina
| | - Han Shi
- Henan Key Laboratory of Biological PsychiatryThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangHenanChina
| | - Dan Lv
- Department of PsychiatryQiqihar Medical UniversityQiqiharHeilongjiangChina
| | - Cuicui Jia
- Department of PsychiatryQiqihar Medical UniversityQiqiharHeilongjiangChina
| | - Tinghuizi Shang
- Department of PsychiatryQiqihar Medical UniversityQiqiharHeilongjiangChina
| | - Lei Sun
- Department of PsychiatryQiqihar Medical UniversityQiqiharHeilongjiangChina
| | - Ru Yang
- Department of RadiologyThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Xiaoping Wang
- National Clinical Research Center for Mental Disordersand Department of PsychiatryThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Wenbin Guo
- National Clinical Research Center for Mental Disordersand Department of PsychiatryThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Luxian Lv
- Henan Key Laboratory of Biological PsychiatryThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangHenanChina
| |
Collapse
|
2
|
Hasuzawa S, Tomiyama H, Murayama K, Ohno A, Kang M, Mizobe T, Kato K, Matsuo A, Kikuchi K, Togao O, Nakao T. Inverse Association Between Resting-State Putamen Activity and Iowa Gambling Task Performance in Patients With Obsessive-Compulsive Disorder and Control Subjects. Front Psychiatry 2022; 13:836965. [PMID: 35633792 PMCID: PMC9136000 DOI: 10.3389/fpsyt.2022.836965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Symptoms of obsessive-compulsive disorder (OCD) have been conceptualized as manifestations of decision-making deficits. Patients with OCD exhibit impairment during the decision-making process, as assessed by the Iowa Gambling Task (IGT). This impairment is independent of clinical severity and disease progression. However, the association between the decision-making deficit and resting-state brain activity of patients with OCD has not been examined. METHODS Fifty unmedicated patients with OCD and 55 matched control subjects completed IGT. Resting-state brain activity was examined using the fractional amplitude of low-frequency fluctuations (fALFFs). fALFF analysis focused on the slow-4 and 5 bands. Group comparisons were performed to determine the association between IGT performance and fALFFs. RESULTS There was a significant group difference in the association between the IGT total net score and slow-4 fALFFs in the left putamen (voxel height threshold of p < 0.001; cluster size threshold of p < 0.05; family wise error-corrected). Higher putamen slow-4 fALFFs were correlated with lower IGT scores for OCD patients (r = -0.485; p < 0.0005) and higher IGT scores for control subjects (r = 0.402; p < 0.005). There was no group difference in the association between the IGT total net score and slow-5 fALFFs. CONCLUSIONS These findings in unmedicated patients demonstrate the importance of resting-state putamen activity for decision-making deficit associated with OCD, as measured by IGT. The inverse correlation may be explained by the hypersensitive response of the putamen in patients with OCD.
Collapse
Affiliation(s)
- Suguru Hasuzawa
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirofumi Tomiyama
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keitaro Murayama
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Aikana Ohno
- Graduate School of Human Environment Studies, Kyushu University, Fukuoka, Japan
| | - Mingi Kang
- Graduate School of Human Environment Studies, Kyushu University, Fukuoka, Japan
| | - Taro Mizobe
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenta Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Matsuo
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazufumi Kikuchi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Osamu Togao
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Increased cerebellar-default-mode network connectivity at rest in obsessive-compulsive disorder. Eur Arch Psychiatry Clin Neurosci 2020; 270:1015-1024. [PMID: 31570980 DOI: 10.1007/s00406-019-01070-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022]
Abstract
Abnormalities of the cerebellum and default-mode network (DMN) in patients with obsessive-compulsive disorder (OCD) have been widely reported. However, alterations of reciprocal functional connections between the cerebellum and DMN at rest in OCD remain unclear. Forty patients with OCD and 38 gender-, age-, and education-matched healthy controls (HCs) underwent resting-state functional magnetic resonance imaging scan. Seed-based functional connectivity (FC) and support vector machine (SVM) were applied to analyze the imaging data. Compared with HCs, patients with OCD exhibited increased FCs between the left Crus I-left superior medial prefrontal cortex (MPFC) and between the right Crus I-left superior MPFC, left middle MPFC, and left middle temporal gyrus (MTG). A significantly negative correlation was observed between the right Crus I-left MTG connectivity and the Yale-Brown Obsessive-Compulsive Scale compulsion subscale scores in the OCD group (r = - 0.476, p = 0.002, Bonferroni corrected). SVM classification analysis indicated that a combination of the left Crus I-left superior MPFC connectivity and the right Crus I-left middle MPFC connectivity can be used to discriminate patients with OCD from HCs with a sensitivity of 85.00%, specificity of 68.42%, and accuracy of 76.92%. Our study highlights the contribution of the cerebellar-DMN connectivity in OCD pathophysiology and provides new findings to OCD research.
Collapse
|
4
|
Zhang H, Wang B, Li K, Wang X, Li X, Zhu J, Zhao Q, Yang Y, Lv L, Zhang M, Zhang H. Altered Functional Connectivity Between the Cerebellum and the Cortico-Striato-Thalamo-Cortical Circuit in Obsessive-Compulsive Disorder. Front Psychiatry 2019; 10:522. [PMID: 31396115 PMCID: PMC6667674 DOI: 10.3389/fpsyt.2019.00522] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 07/02/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Altered resting-state functional connectivity of the cerebellum in obsessive-compulsive disorder (OCD) has been previously reported. However, the previous study investigating cerebellar-cerebral functional connectivity relied on a priori-defined seeds from specific networks. In this study, we aimed to explore the connectivity alterations of the cerebellum in OCD under resting-state conditions with a hypothesis-free approach. Methods: Thirty patients with OCD and 26 healthy controls (HCs) underwent functional magnetic resonance imaging (fMRI) scanning at resting state. Regional cerebral function was evaluated by measuring the fraction of amplitude of low-frequency fluctuation (fALFF). Regions with mean fALFF (mfALFF) alterations were used as seeds in seed correlation analysis (SCA). An independent samples t test was used to compare the differences in mfALFF and functional connection (FC) between the two groups. Pearson correlation analysis was performed to identify the association between functional neural correlates and OCD symptom severity evaluated using the Yale-Brown Obsessive Compulsive Scale (Y-BOCS). Results: Compared with the HC group, the OCD group showed significantly increased mfALFF values in bilateral cerebellar. The results of FC analysis showed weakened connectivity among the left Crus II, lobule VIII, and right striatum and between the right lobule VIII and the right striatum, and cingulate in the OCD group compared with the HC group. Some of the abovementioned results were associated with symptom severity. Conclusions: OCD patients showed abnormal spontaneous cerebellar activity and weakened functional connectivity between the cerebellum and the cortico-striato-thalamo-cortical (CSTC) circuit (striatum and cingulate), suggesting that the cerebellum may play an essential role in the pathophysiology of OCD.
Collapse
Affiliation(s)
- Haisan Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Xinxiang Key Laboratory of Multimodal Brain Imaging, Xinxiang, China
| | - Bi Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Xinxiang Key Laboratory of Multimodal Brain Imaging, Xinxiang, China
| | - Kun Li
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Xinxiang Key Laboratory of Multimodal Brain Imaging, Xinxiang, China
| | - Xiaoyue Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Xinxiang Key Laboratory of Multimodal Brain Imaging, Xinxiang, China
| | - Xianrui Li
- School of Psychology, Xinxiang Medical University, Xinxiang, China
| | - Jianli Zhu
- School of Psychology, Xinxiang Medical University, Xinxiang, China
| | - Qingjiang Zhao
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Xinxiang Key Laboratory of Multimodal Brain Imaging, Xinxiang, China
| | - Yongfeng Yang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, China
| | - Luxian Lv
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Meng Zhang
- School of Psychology, Xinxiang Medical University, Xinxiang, China
| | - Hongxing Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,School of Psychology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|