1
|
Alnazer I, Falou O, Bourdon P, Urruty T, Guillevin R, Khalil M, Shahin A, Fernandez-Maloigne C. Usefulness of computed tomography textural analysis in renal cell carcinoma nuclear grading. J Med Imaging (Bellingham) 2022; 9:054501. [PMID: 36120414 PMCID: PMC9467905 DOI: 10.1117/1.jmi.9.5.054501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/24/2022] [Indexed: 09/15/2023] Open
Abstract
Purpose: To evaluate the usefulness of computed tomography (CT) texture descriptors integrated with machine-learning (ML) models in the identification of clear cell renal cell carcinoma (ccRCC) and for the first time papillary renal cell carcinoma (pRCC) tumor nuclear grades [World Health Organization (WHO)/International Society of Urologic Pathologists (ISUP) 1, 2, 3, and 4]. Approach: A total of 143 ccRCC and 21 pRCC patients were analyzed in this study. Texture features were extracted from late arterial phase CT images. A complete separation of training/validation and testing subsets from the beginning to the end of the pipeline was adopted. Feature dimension was reduced by collinearity analysis and Gini impurity-based feature selection. The synthetic minority over-sampling technique was employed for imbalanced datasets. The ML classifiers were logistic regression, SVM, RF, multi-layer perceptron, and K -NN. The differentiation between low grades/ high grades, grade 1/grade 2, grade 3/grade 4, and between all grades was assessed for ccRCC and pRCC datasets. The classification performance was assessed and compared by certain metrics. Results: Textures-based classifiers were able to efficiently identify ccRCC and pRCC grades. An accuracy and area under the characteristic operating curve (AUC) up to 91%/0.9, 91%/0.9, 90%/0.9, and 88%/1 were reached when discriminating ccRCC low grades/ high grades, grade 1/grade 2, grade 3/grade 4, and all grades, respectively. An accuracy and AUC up to 96%/1, 81%/0.8, 86%/0.9, and 88%/0.9 were found when differentiating pRCC low grades/ high grades, grade 1/grade 2, grade 3/grade 4, and all grades, respectively. Conclusion: CT texture-based ML models can be used to assist radiologist in predicting the WHO/ISUP grade of ccRCC and pRCC pre-operatively.
Collapse
Affiliation(s)
- Israa Alnazer
- Université de Poitiers, XLIM-ICONES, UMR CNRS 7252, Poitiers, France
- Laboratoire commun CNRS/SIEMENS I3M, Poitiers, France
- Lebanese University, AZM Center for Research in Biotechnology and Its Applications, EDST, Tripoli, Lebanon
| | - Omar Falou
- Lebanese University, AZM Center for Research in Biotechnology and Its Applications, EDST, Tripoli, Lebanon
- American University of Culture and Education, Koura, Lebanon
- Lebanese University, Faculty of Science, Tripoli, Lebanon
- Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Pascal Bourdon
- Université de Poitiers, XLIM-ICONES, UMR CNRS 7252, Poitiers, France
- Laboratoire commun CNRS/SIEMENS I3M, Poitiers, France
| | - Thierry Urruty
- Université de Poitiers, XLIM-ICONES, UMR CNRS 7252, Poitiers, France
- Laboratoire commun CNRS/SIEMENS I3M, Poitiers, France
| | - Rémy Guillevin
- Laboratoire commun CNRS/SIEMENS I3M, Poitiers, France
- Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Mohamad Khalil
- Lebanese University, AZM Center for Research in Biotechnology and Its Applications, EDST, Tripoli, Lebanon
| | - Ahmad Shahin
- Lebanese University, AZM Center for Research in Biotechnology and Its Applications, EDST, Tripoli, Lebanon
| | - Christine Fernandez-Maloigne
- Université de Poitiers, XLIM-ICONES, UMR CNRS 7252, Poitiers, France
- Laboratoire commun CNRS/SIEMENS I3M, Poitiers, France
| |
Collapse
|