1
|
Sanchez-Perez JA, Gazi AH, Mabrouk SA, Berkebile JA, Ozmen GC, Kamaleswaran R, Inan OT. Enabling Continuous Breathing-Phase Contextualization via Wearable-Based Impedance Pneumography and Lung Sounds: A Feasibility Study. IEEE J Biomed Health Inform 2023; 27:5734-5744. [PMID: 37751335 PMCID: PMC10733967 DOI: 10.1109/jbhi.2023.3319381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Chronic respiratory diseases affect millions and are leading causes of death in the US and worldwide. Pulmonary auscultation provides clinicians with critical respiratory health information through the study of Lung Sounds (LS) and the context of the breathing-phase and chest location in which they are measured. Existing auscultation technologies, however, do not enable the simultaneous measurement of this context, thereby potentially limiting computerized LS analysis. In this work, LS and Impedance Pneumography (IP) measurements were obtained from 10 healthy volunteers while performing normal and forced-expiratory (FE) breathing maneuvers using our wearable IP and respiratory sounds (WIRS) system. Simultaneous auscultation was performed with the Eko CORE stethoscope (EKO). The breathing-phase context was extracted from the IP signals and used to compute phase-by-phase (Inspiratory (I), expiratory (E), and their ratio (I:E)) and breath-by-breath acoustic features. Their individual and added value was then elucidated through machine learning analysis. We found that the phase-contextualized features effectively captured the underlying acoustic differences between deep and FE breaths, yielding a maximum F1 Score of 84.1 ±11.4% with the phase-by-phase features as the strongest contributors to this performance. Further, the individual phase-contextualized models outperformed the traditional breath-by-breath models in all cases. The validity of the results was demonstrated for the LS obtained with WIRS, EKO, and their combination. These results suggest that incorporating breathing-phase context may enhance computerized LS analysis. Hence, multimodal sensing systems that enable this, such as WIRS, have the potential to advance LS clinical utility beyond traditional manual auscultation and improve patient care.
Collapse
|
2
|
Garcia-Mendez JP, Lal A, Herasevich S, Tekin A, Pinevich Y, Lipatov K, Wang HY, Qamar S, Ayala IN, Khapov I, Gerberi DJ, Diedrich D, Pickering BW, Herasevich V. Machine Learning for Automated Classification of Abnormal Lung Sounds Obtained from Public Databases: A Systematic Review. Bioengineering (Basel) 2023; 10:1155. [PMID: 37892885 PMCID: PMC10604310 DOI: 10.3390/bioengineering10101155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Pulmonary auscultation is essential for detecting abnormal lung sounds during physical assessments, but its reliability depends on the operator. Machine learning (ML) models offer an alternative by automatically classifying lung sounds. ML models require substantial data, and public databases aim to address this limitation. This systematic review compares characteristics, diagnostic accuracy, concerns, and data sources of existing models in the literature. Papers published from five major databases between 1990 and 2022 were assessed. Quality assessment was accomplished with a modified QUADAS-2 tool. The review encompassed 62 studies utilizing ML models and public-access databases for lung sound classification. Artificial neural networks (ANN) and support vector machines (SVM) were frequently employed in the ML classifiers. The accuracy ranged from 49.43% to 100% for discriminating abnormal sound types and 69.40% to 99.62% for disease class classification. Seventeen public databases were identified, with the ICBHI 2017 database being the most used (66%). The majority of studies exhibited a high risk of bias and concerns related to patient selection and reference standards. Summarizing, ML models can effectively classify abnormal lung sounds using publicly available data sources. Nevertheless, inconsistent reporting and methodologies pose limitations to advancing the field, and therefore, public databases should adhere to standardized recording and labeling procedures.
Collapse
Affiliation(s)
- Juan P. Garcia-Mendez
- Department of Anesthesiology and Perioperative Medicine, Division of Critical Care, Mayo Clinic, Rochester, MN 55905, USA (Y.P.); (H.-Y.W.); (I.K.); (V.H.)
| | - Amos Lal
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Svetlana Herasevich
- Department of Anesthesiology and Perioperative Medicine, Division of Critical Care, Mayo Clinic, Rochester, MN 55905, USA (Y.P.); (H.-Y.W.); (I.K.); (V.H.)
| | - Aysun Tekin
- Department of Anesthesiology and Perioperative Medicine, Division of Critical Care, Mayo Clinic, Rochester, MN 55905, USA (Y.P.); (H.-Y.W.); (I.K.); (V.H.)
| | - Yuliya Pinevich
- Department of Anesthesiology and Perioperative Medicine, Division of Critical Care, Mayo Clinic, Rochester, MN 55905, USA (Y.P.); (H.-Y.W.); (I.K.); (V.H.)
- Department of Cardiac Anesthesiology and Intensive Care, Republican Clinical Medical Center, 223052 Minsk, Belarus
| | - Kirill Lipatov
- Division of Pulmonary Medicine, Mayo Clinic Health Systems, Essentia Health, Duluth, MN 55805, USA
| | - Hsin-Yi Wang
- Department of Anesthesiology and Perioperative Medicine, Division of Critical Care, Mayo Clinic, Rochester, MN 55905, USA (Y.P.); (H.-Y.W.); (I.K.); (V.H.)
- Department of Anesthesiology, Taipei Veterans General Hospital, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 320317, Taiwan
| | - Shahraz Qamar
- Department of Anesthesiology and Perioperative Medicine, Division of Critical Care, Mayo Clinic, Rochester, MN 55905, USA (Y.P.); (H.-Y.W.); (I.K.); (V.H.)
| | - Ivan N. Ayala
- Department of Anesthesiology and Perioperative Medicine, Division of Critical Care, Mayo Clinic, Rochester, MN 55905, USA (Y.P.); (H.-Y.W.); (I.K.); (V.H.)
| | - Ivan Khapov
- Department of Anesthesiology and Perioperative Medicine, Division of Critical Care, Mayo Clinic, Rochester, MN 55905, USA (Y.P.); (H.-Y.W.); (I.K.); (V.H.)
| | | | - Daniel Diedrich
- Department of Anesthesiology and Perioperative Medicine, Division of Critical Care, Mayo Clinic, Rochester, MN 55905, USA (Y.P.); (H.-Y.W.); (I.K.); (V.H.)
| | - Brian W. Pickering
- Department of Anesthesiology and Perioperative Medicine, Division of Critical Care, Mayo Clinic, Rochester, MN 55905, USA (Y.P.); (H.-Y.W.); (I.K.); (V.H.)
| | - Vitaly Herasevich
- Department of Anesthesiology and Perioperative Medicine, Division of Critical Care, Mayo Clinic, Rochester, MN 55905, USA (Y.P.); (H.-Y.W.); (I.K.); (V.H.)
| |
Collapse
|
3
|
Huang DM, Huang J, Qiao K, Zhong NS, Lu HZ, Wang WJ. Deep learning-based lung sound analysis for intelligent stethoscope. Mil Med Res 2023; 10:44. [PMID: 37749643 PMCID: PMC10521503 DOI: 10.1186/s40779-023-00479-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/05/2023] [Indexed: 09/27/2023] Open
Abstract
Auscultation is crucial for the diagnosis of respiratory system diseases. However, traditional stethoscopes have inherent limitations, such as inter-listener variability and subjectivity, and they cannot record respiratory sounds for offline/retrospective diagnosis or remote prescriptions in telemedicine. The emergence of digital stethoscopes has overcome these limitations by allowing physicians to store and share respiratory sounds for consultation and education. On this basis, machine learning, particularly deep learning, enables the fully-automatic analysis of lung sounds that may pave the way for intelligent stethoscopes. This review thus aims to provide a comprehensive overview of deep learning algorithms used for lung sound analysis to emphasize the significance of artificial intelligence (AI) in this field. We focus on each component of deep learning-based lung sound analysis systems, including the task categories, public datasets, denoising methods, and, most importantly, existing deep learning methods, i.e., the state-of-the-art approaches to convert lung sounds into two-dimensional (2D) spectrograms and use convolutional neural networks for the end-to-end recognition of respiratory diseases or abnormal lung sounds. Additionally, this review highlights current challenges in this field, including the variety of devices, noise sensitivity, and poor interpretability of deep models. To address the poor reproducibility and variety of deep learning in this field, this review also provides a scalable and flexible open-source framework that aims to standardize the algorithmic workflow and provide a solid basis for replication and future extension: https://github.com/contactless-healthcare/Deep-Learning-for-Lung-Sound-Analysis .
Collapse
Affiliation(s)
- Dong-Min Huang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Jia Huang
- The Third People's Hospital of Shenzhen, Shenzhen, 518112, Guangdong, China
| | - Kun Qiao
- The Third People's Hospital of Shenzhen, Shenzhen, 518112, Guangdong, China
| | - Nan-Shan Zhong
- Guangzhou Institute of Respiratory Health, China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Hong-Zhou Lu
- The Third People's Hospital of Shenzhen, Shenzhen, 518112, Guangdong, China.
| | - Wen-Jin Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
4
|
Fernando T, Sridharan S, Denman S, Ghaemmaghami H, Fookes C. Robust and Interpretable Temporal Convolution Network for Event Detection in Lung Sound Recordings. IEEE J Biomed Health Inform 2022; 26:2898-2908. [DOI: 10.1109/jbhi.2022.3144314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Hsu FS, Huang SR, Huang CW, Huang CJ, Cheng YR, Chen CC, Hsiao J, Chen CW, Chen LC, Lai YC, Hsu BF, Lin NJ, Tsai WL, Wu YL, Tseng TL, Tseng CT, Chen YT, Lai F. Benchmarking of eight recurrent neural network variants for breath phase and adventitious sound detection on a self-developed open-access lung sound database-HF_Lung_V1. PLoS One 2021; 16:e0254134. [PMID: 34197556 PMCID: PMC8248710 DOI: 10.1371/journal.pone.0254134] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/20/2021] [Indexed: 01/15/2023] Open
Abstract
A reliable, remote, and continuous real-time respiratory sound monitor with automated respiratory sound analysis ability is urgently required in many clinical scenarios-such as in monitoring disease progression of coronavirus disease 2019-to replace conventional auscultation with a handheld stethoscope. However, a robust computerized respiratory sound analysis algorithm for breath phase detection and adventitious sound detection at the recording level has not yet been validated in practical applications. In this study, we developed a lung sound database (HF_Lung_V1) comprising 9,765 audio files of lung sounds (duration of 15 s each), 34,095 inhalation labels, 18,349 exhalation labels, 13,883 continuous adventitious sound (CAS) labels (comprising 8,457 wheeze labels, 686 stridor labels, and 4,740 rhonchus labels), and 15,606 discontinuous adventitious sound labels (all crackles). We conducted benchmark tests using long short-term memory (LSTM), gated recurrent unit (GRU), bidirectional LSTM (BiLSTM), bidirectional GRU (BiGRU), convolutional neural network (CNN)-LSTM, CNN-GRU, CNN-BiLSTM, and CNN-BiGRU models for breath phase detection and adventitious sound detection. We also conducted a performance comparison between the LSTM-based and GRU-based models, between unidirectional and bidirectional models, and between models with and without a CNN. The results revealed that these models exhibited adequate performance in lung sound analysis. The GRU-based models outperformed, in terms of F1 scores and areas under the receiver operating characteristic curves, the LSTM-based models in most of the defined tasks. Furthermore, all bidirectional models outperformed their unidirectional counterparts. Finally, the addition of a CNN improved the accuracy of lung sound analysis, especially in the CAS detection tasks.
Collapse
Affiliation(s)
- Fu-Shun Hsu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
- Department of Critical Care Medicine, Far Eastern Memorial Hospital, New Taipei, Taiwan
- Heroic Faith Medical Science Co., Ltd., Taipei, Taiwan
| | | | | | - Chao-Jung Huang
- Joint Research Center for Artificial Intelligence Technology and All Vista Healthcare, National Taiwan University, Taipei, Taiwan
| | - Yuan-Ren Cheng
- Heroic Faith Medical Science Co., Ltd., Taipei, Taiwan
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | - Jack Hsiao
- HCC Healthcare Group, New Taipei, Taiwan
| | - Chung-Wei Chen
- Department of Critical Care Medicine, Far Eastern Memorial Hospital, New Taipei, Taiwan
| | - Li-Chin Chen
- Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan
| | - Yen-Chun Lai
- Heroic Faith Medical Science Co., Ltd., Taipei, Taiwan
| | - Bi-Fang Hsu
- Heroic Faith Medical Science Co., Ltd., Taipei, Taiwan
| | - Nian-Jhen Lin
- Heroic Faith Medical Science Co., Ltd., Taipei, Taiwan
- Division of Pulmonary Medicine, Far Eastern Memorial Hospital, New Taipei, Taiwan
| | - Wan-Ling Tsai
- Heroic Faith Medical Science Co., Ltd., Taipei, Taiwan
| | - Yi-Lin Wu
- Heroic Faith Medical Science Co., Ltd., Taipei, Taiwan
| | | | | | - Yi-Tsun Chen
- Heroic Faith Medical Science Co., Ltd., Taipei, Taiwan
| | - Feipei Lai
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
Jung SY, Liao CH, Wu YS, Yuan SM, Sun CT. Efficiently Classifying Lung Sounds through Depthwise Separable CNN Models with Fused STFT and MFCC Features. Diagnostics (Basel) 2021; 11:732. [PMID: 33924146 PMCID: PMC8074359 DOI: 10.3390/diagnostics11040732] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 01/18/2023] Open
Abstract
Lung sounds remain vital in clinical diagnosis as they reveal associations with pulmonary pathologies. With COVID-19 spreading across the world, it has become more pressing for medical professionals to better leverage artificial intelligence for faster and more accurate lung auscultation. This research aims to propose a feature engineering process that extracts the dedicated features for the depthwise separable convolution neural network (DS-CNN) to classify lung sounds accurately and efficiently. We extracted a total of three features for the shrunk DS-CNN model: the short-time Fourier-transformed (STFT) feature, the Mel-frequency cepstrum coefficient (MFCC) feature, and the fused features of these two. We observed that while DS-CNN models trained on either the STFT or the MFCC feature achieved an accuracy of 82.27% and 73.02%, respectively, fusing both features led to a higher accuracy of 85.74%. In addition, our method achieved 16 times higher inference speed on an edge device and only 0.45% less accuracy than RespireNet. This finding indicates that the fusion of the STFT and MFCC features and DS-CNN would be a model design for lightweight edge devices to achieve accurate AI-aided detection of lung diseases.
Collapse
Affiliation(s)
- Shing-Yun Jung
- Department of Computer Science, National Chiao Tung University, Hsinchu 300, Taiwan; (C.-H.L.); (Y.-S.W.); (C.-T.S.)
| | - Chia-Hung Liao
- Department of Computer Science, National Chiao Tung University, Hsinchu 300, Taiwan; (C.-H.L.); (Y.-S.W.); (C.-T.S.)
| | - Yu-Sheng Wu
- Department of Computer Science, National Chiao Tung University, Hsinchu 300, Taiwan; (C.-H.L.); (Y.-S.W.); (C.-T.S.)
| | - Shyan-Ming Yuan
- Department of Computer Science, National Chiao Tung University, Hsinchu 300, Taiwan; (C.-H.L.); (Y.-S.W.); (C.-T.S.)
- Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Chuen-Tsai Sun
- Department of Computer Science, National Chiao Tung University, Hsinchu 300, Taiwan; (C.-H.L.); (Y.-S.W.); (C.-T.S.)
- Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|