1
|
Zhao H, Zhang X, Chen M, Zhou P. Online Decomposition of Surface Electromyogram Into Individual Motor Unit Activities Using Progressive FastICA Peel-Off. IEEE Trans Biomed Eng 2024; 71:160-170. [PMID: 37432836 DOI: 10.1109/tbme.2023.3294016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Surface electromyogram (SEMG) decomposition provides a promising tool for decoding and understanding neural drive information non-invasively. In contrast to previous SEMG decomposition methods mainly developed in offline conditions, there are few studies on online SEMG decomposition. A novel method for online decomposition of SEMG data is presented using the progressive FastICA peel-off (PFP) method. The proposed online method utilized a two-stage approach, consisting of an offline prework stage for initializing high-quality separation vectors through the offline PFP algorithm, and an online decomposition stage for estimating source signals of different motor units by applying these vectors to the input SEMG data stream. Specifically, a new successive multi-threshold Otsu algorithm was developed in the online stage for determining each motor unit spike train (MUST) precisely with fast and simple computations (to replace a time-consuming iterative threshold setting in the original PFP method). The performance of the proposed online SEMG decomposition method was evaluated by both simulation and experimental approaches. When processing simulated SEMG data, the online PFP method achieved a decomposition accuracy of 97.37%, superior to that (95.1%) of an online method with a traditional k-means clustering algorithm for MUST extraction. Our method was also found to achieve superior performance at higher noise levels. For decomposing experimental SEMG data, the online PFP method was able to extract an average of 12.00 ± 3.46 MUs per trial, with a matching rate of 90.38%, with respect to the expert-guided offline decomposition results. Our study provides a valuable way of online decomposition of SEMG data with advanced applications in movement control and health.
Collapse
|
2
|
Gogeascoechea A, Ornelas-Kobayashi R, Yavuz US, Sartori M. Characterization of Motor Unit Firing and Twitch Properties for Decoding Musculoskeletal Force in the Human Ankle Joint In Vivo. IEEE Trans Neural Syst Rehabil Eng 2023; 31:4040-4050. [PMID: 37756177 DOI: 10.1109/tnsre.2023.3319959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Understanding how motor units (MUs) contribute to skeletal mechanical force is crucial for unraveling the underlying mechanism of human movement. Alterations in MU firing, contractile and force-generating properties emerge in response to physical training, aging or injury. However, how changes in MU firing and twitch properties dictate skeletal muscle force generation in healthy and impaired individuals remains an open question. In this work, we present a MU-specific approach to identify firing and twitch properties of MU samples and employ them to decode musculoskeletal function in vivo. First, MU firing events were decomposed offline from high-density electromyography (HD-EMG) of six lower leg muscles involved in ankle plantar-dorsi flexion. We characterized their twitch responses based on the statistical distributions of their firing properties and employed them to compute MU-specific activation dynamics. Subsequently, we decoded ankle joint moments by linking our framework to a subject-specific musculoskeletal model. We validated our approach at different ankle positions and levels of activation and compared it with traditional EMG-driven models. Our proposed MU-specific formulation achieves higher generalization across conditions than the EMG-driven models, with significantly lower coefficients of variation in torque predictions. Furthermore, our approach shows distinct neural strategies across a large repertoire of contractile conditions in different muscles. Our proposed approach may open new avenues for characterizing the relationship between MU firing and twitch properties and their influence on force capacity. This can facilitate the development of targeted rehabilitation strategies tailored to individuals with specific neuromuscular conditions.
Collapse
|
3
|
Koelewijn AD, Audu M, del-Ama AJ, Colucci A, Font-Llagunes JM, Gogeascoechea A, Hnat SK, Makowski N, Moreno JC, Nandor M, Quinn R, Reichenbach M, Reyes RD, Sartori M, Soekadar S, Triolo RJ, Vermehren M, Wenger C, Yavuz US, Fey D, Beckerle P. Adaptation Strategies for Personalized Gait Neuroprosthetics. Front Neurorobot 2021; 15:750519. [PMID: 34975445 PMCID: PMC8716811 DOI: 10.3389/fnbot.2021.750519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Personalization of gait neuroprosthetics is paramount to ensure their efficacy for users, who experience severe limitations in mobility without an assistive device. Our goal is to develop assistive devices that collaborate with and are tailored to their users, while allowing them to use as much of their existing capabilities as possible. Currently, personalization of devices is challenging, and technological advances are required to achieve this goal. Therefore, this paper presents an overview of challenges and research directions regarding an interface with the peripheral nervous system, an interface with the central nervous system, and the requirements of interface computing architectures. The interface should be modular and adaptable, such that it can provide assistance where it is needed. Novel data processing technology should be developed to allow for real-time processing while accounting for signal variations in the human. Personalized biomechanical models and simulation techniques should be developed to predict assisted walking motions and interactions between the user and the device. Furthermore, the advantages of interfacing with both the brain and the spinal cord or the periphery should be further explored. Technological advances of interface computing architecture should focus on learning on the chip to achieve further personalization. Furthermore, energy consumption should be low to allow for longer use of the neuroprosthesis. In-memory processing combined with resistive random access memory is a promising technology for both. This paper discusses the aforementioned aspects to highlight new directions for future research in gait neuroprosthetics.
Collapse
Affiliation(s)
- Anne D. Koelewijn
- Biomechanical Data Analysis and Creation (BIOMAC) Group, Machine Learning and Data Analytics Lab, Faculty of Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Musa Audu
- Department of Veterans Affairs, Louis Stokes Clevel and Veterans Affairs Medical Center, Advanced Platform Technology Center, Cleveland, OH, United States
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Antonio J. del-Ama
- Applied Mathematics, Materials Science and Technology and Electronic Technology Department, Rey Juan Carlos University, Mostoles, Spain
| | - Annalisa Colucci
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Neurosciences, Charité - Universita¨tsmedizin Berlin, Berlin, Germany
| | - Josep M. Font-Llagunes
- Biomechanical Engineering Lab, Department of Mechanical Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Antonio Gogeascoechea
- Department of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, Enschede, Netherlands
| | - Sandra K. Hnat
- Department of Veterans Affairs, Louis Stokes Clevel and Veterans Affairs Medical Center, Advanced Platform Technology Center, Cleveland, OH, United States
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Nathan Makowski
- Department of Veterans Affairs, Louis Stokes Clevel and Veterans Affairs Medical Center, Advanced Platform Technology Center, Cleveland, OH, United States
- Department of Physical Medicine and Rehabilitation, MetroHealth Medical Center, Cleveland, OH, United States
| | - Juan C. Moreno
- Neural Rehabilitation Group, Department of Translational Neuroscience, Cajal Institute, CSIC, Madrid, Spain
| | - Mark Nandor
- Department of Veterans Affairs, Louis Stokes Clevel and Veterans Affairs Medical Center, Advanced Platform Technology Center, Cleveland, OH, United States
- Department of Mechanical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Roger Quinn
- Department of Veterans Affairs, Louis Stokes Clevel and Veterans Affairs Medical Center, Advanced Platform Technology Center, Cleveland, OH, United States
- Department of Mechanical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Marc Reichenbach
- Chair of Computer Engineering, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
- Chair for Computer Architecture, Department of Computer Science, Faculty of Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ryan-David Reyes
- Department of Veterans Affairs, Louis Stokes Clevel and Veterans Affairs Medical Center, Advanced Platform Technology Center, Cleveland, OH, United States
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Massimo Sartori
- Department of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, Enschede, Netherlands
| | - Surjo Soekadar
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Neurosciences, Charité - Universita¨tsmedizin Berlin, Berlin, Germany
| | - Ronald J. Triolo
- Department of Veterans Affairs, Louis Stokes Clevel and Veterans Affairs Medical Center, Advanced Platform Technology Center, Cleveland, OH, United States
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Mareike Vermehren
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Neurosciences, Charité - Universita¨tsmedizin Berlin, Berlin, Germany
| | - Christian Wenger
- IHP-Leibniz Institut Fuer Innovative Mikroelektronik, Frankfurt (Oder), Germany
| | - Utku S. Yavuz
- Biomedical Signals and Systems Group, University of Twente, Enschede, Netherlands
| | - Dietmar Fey
- Chair for Computer Architecture, Department of Computer Science, Faculty of Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Philipp Beckerle
- Chair of Autonomous Systems and Mechatronics, Department of Electrical Engineering, Artificial Intelligence in Biomedical Engineering, Faculty of Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|