Wei Q, Cao H, Shi Y, Xu X, Li T. Machine learning based on eye-tracking data to identify Autism Spectrum Disorder: A systematic review and meta-analysis.
J Biomed Inform 2023;
137:104254. [PMID:
36509416 DOI:
10.1016/j.jbi.2022.104254]
[Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND
Machine learning has been widely used to identify Autism Spectrum Disorder (ASD) based on eye-tracking, but its accuracy is uncertain. We aimed to summarize the available evidence on the performances of machine learning algorithms in classifying ASD and typically developing (TD) individuals based on eye-tracking data.
METHODS
We searched Medline, Embase, Web of Science, Scopus, Cochrane Library, IEEE Xplore Digital Library, Wan Fang Database, China National Knowledge Infrastructure, Chinese BioMedical Literature Database, VIP Database for Chinese Technical Periodicals, from database inception to December 24, 2021. Studies using machine learning methods to classify ASD and TD individuals based on eye-tracking technologies were included. We extracted the data on study population, model performances, algorithms of machine learning, and paradigms of eye-tracking. This study is registered with PROSPERO, CRD42022296037.
RESULTS
261 articles were identified, of which 24 studies with sample sizes ranging from 28 to 141 were included (n = 1396 individuals). Machine learning based on eye-tracking yielded the pooled classified accuracy of 81 % (I2 = 73 %), specificity of 79 % (I2 = 61 %), and sensitivity of 84 % (I2 = 61 %) in classifying ASD and TD individuals. In subgroup analysis, the accuracy was 88 % (95 % CI: 85-91 %), 79 % (95 % CI: 72-84 %), 71 % (95 % CI: 59-91 %) for preschool-aged, school-aged, and adolescent-adult group. Eye-tracking stimuli and machine learning algorithms varied widely across studies, with social, static, and active stimuli and Support Vector Machine and Random Forest most commonly reported. Regarding the model performance evaluation, 15 studies reported their final results on validation datasets, four based on testing datasets, and five did not report whether they used validation datasets. Most studies failed to report the information on eye-tracking hardware and the implementation process.
CONCLUSION
Using eye-tracking data, machine learning has shown potential in identifying ASD individuals with high accuracy, especially in preschool-aged children. However, the heterogeneity between studies, the absence of test set-based performance evaluations, the small sample size, and the non-standardized implementation of eye-tracking might deteriorate the reliability of results. Further well-designed and well-executed studies with comprehensive and transparent reporting are needed to determine the optimal eye-tracking paradigms and machine learning algorithms.
Collapse