Xie X, Wang M, Qin L, Pan Y, Zhang S. An Operational Approach for Optimizing Transcranial Direct Current Stimulation.
ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023;
2023:1-4. [PMID:
38082713 DOI:
10.1109/embc40787.2023.10340048]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that has been utilized for treating brain disorders and improving cognitive function. In order to achieve targeted tDCS, many optimization methods of montages and electric currents have been proposed. However, these methods have some limitations. Most of them were proposed for single-objective optimization (focality or intensity) and have no constrain with the number of electrodes (Most devices only have less than 8 electrodes currently). In this study, we proposed an operational optimization approach for well-targeted tDCS, which aims to optimize for two objectives of electric field (EF) intensity and focality with constraints on the number of electrodes. Compared with traditional tDCS in our cohort (10 subjects), our method significantly improves the EF focality. When compared to commonly used 4×1 high-definition tDCS (HD-tDCS), our method can achieve higher EF intensity in the target region with less than 8 electrodes. Our method can balance the two objectives of EF and shorten optimization time, which is convenient for practical application.
Collapse