1
|
Rokhshad R, Mohammad-Rahimi H, Sohrabniya F, Jafari B, Shobeiri P, Tsolakis IA, Ourang SA, Sultan AS, Khawaja SN, Bavarian R, Palomo JM. Deep learning for temporomandibular joint arthropathies: A systematic review and meta-analysis. J Oral Rehabil 2024; 51:1632-1644. [PMID: 38757865 DOI: 10.1111/joor.13701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/20/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND AND OBJECTIVE The accurate diagnosis of temporomandibular disorders continues to be a challenge, despite the existence of internationally agreed-upon diagnostic criteria. The purpose of this study is to review applications of deep learning models in the diagnosis of temporomandibular joint arthropathies. MATERIALS AND METHODS An electronic search was conducted on PubMed, Scopus, Embase, Google Scholar, IEEE, arXiv, and medRxiv up to June 2023. Studies that reported the efficacy (outcome) of prediction, object detection or classification of TMJ arthropathies by deep learning models (intervention) of human joint-based or arthrogenous TMDs (population) in comparison to reference standard (comparison) were included. To evaluate the risk of bias, included studies were critically analysed using the quality assessment of diagnostic accuracy studies (QUADAS-2). Diagnostic odds ratios (DOR) were calculated. Forrest plot and funnel plot were created using STATA 17 and MetaDiSc. RESULTS Full text review was performed on 46 out of the 1056 identified studies and 21 studies met the eligibility criteria and were included in the systematic review. Four studies were graded as having a low risk of bias for all domains of QUADAS-2. The accuracy of all included studies ranged from 74% to 100%. Sensitivity ranged from 54% to 100%, specificity: 85%-100%, Dice coefficient: 85%-98%, and AUC: 77%-99%. The datasets were then pooled based on the sensitivity, specificity, and dataset size of seven studies that qualified for meta-analysis. The pooled sensitivity was 95% (85%-99%), specificity: 92% (86%-96%), and AUC: 97% (96%-98%). DORs were 232 (74-729). According to Deek's funnel plot and statistical evaluation (p =.49), publication bias was not present. CONCLUSION Deep learning models can detect TMJ arthropathies high sensitivity and specificity. Clinicians, and especially those not specialized in orofacial pain, may benefit from this methodology for assessing TMD as it facilitates a rigorous and evidence-based framework, objective measurements, and advanced analysis techniques, ultimately enhancing diagnostic accuracy.
Collapse
Affiliation(s)
- Rata Rokhshad
- Topic Group Dental Diagnostics and Digital Dentistry, ITU/WHO Focus Group AI on Health, Berlin, Germany
| | - Hossein Mohammad-Rahimi
- Topic Group Dental Diagnostics and Digital Dentistry, ITU/WHO Focus Group AI on Health, Berlin, Germany
- Division of Artificial Intelligence Research, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Fatemeh Sohrabniya
- Topic Group Dental Diagnostics and Digital Dentistry, ITU/WHO Focus Group AI on Health, Berlin, Germany
| | - Bahare Jafari
- Topic Group Dental Diagnostics and Digital Dentistry, ITU/WHO Focus Group AI on Health, Berlin, Germany
| | - Parnian Shobeiri
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Ioannis A Tsolakis
- Department of Orthodontics, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Orthodontics, School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Seyed AmirHossein Ourang
- Dentofacial Deformities Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmed S Sultan
- Division of Artificial Intelligence Research, University of Maryland School of Dentistry, Baltimore, Maryland, USA
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Shehryar Nasir Khawaja
- Orofacial Pain Medicine, Shaukat Khanum Memorial Cancer Hospitals and Research Centres, Lahore and Peshawar, Pakistan
- School of Dental Medicine, Tufts University, Boston, Massachusetts, USA
| | - Roxanne Bavarian
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Oral and Maxillofacial Surgery, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Juan Martin Palomo
- Department of Orthodontics, School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Zhang Y, Zhu T, Zheng Y, Xiong Y, Liu W, Zeng W, Tang W, Liu C. Machine learning-based medical imaging diagnosis in patients with temporomandibular disorders: a diagnostic test accuracy systematic review and meta-analysis. Clin Oral Investig 2024; 28:186. [PMID: 38430334 DOI: 10.1007/s00784-024-05586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
OBJECTIVES Temporomandibular disorders (TMDs) are the second most common musculoskeletal condition which are challenging tasks for most clinicians. Recent research used machine learning (ML) algorithms to diagnose TMDs intelligently. This study aimed to systematically evaluate the quality of these studies and assess the diagnostic accuracy of existing models. MATERIALS AND METHODS Twelve databases (Europe PMC, Embase, etc.) and two registers were searched for published and unpublished studies using ML algorithms on medical images. Two reviewers extracted the characteristics of studies and assessed the methodological quality using the QUADAS-2 tool independently. RESULTS A total of 28 studies (29 reports) were included: one was at unclear risk of bias and the others were at high risk. Thus the certainty of evidence was quite low. These studies used many types of algorithms including 8 machine learning models (logistic regression, support vector machine, random forest, etc.) and 15 deep learning models (Resnet152, Yolo v5, Inception V3, etc.). The diagnostic accuracy of a few models was relatively satisfactory. The pooled sensitivity and specificity were 0.745 (0.660-0.814) and 0.770 (0.700-0.828) in random forest, 0.765 (0.686-0.829) and 0.766 (0.688-0.830) in XGBoost, and 0.781 (0.704-0.843) and 0.781 (0.704-0.843) in LightGBM. CONCLUSIONS Most studies had high risks of bias in Patient Selection and Index Test. Some algorithms are relatively satisfactory and might be promising in intelligent diagnosis. Overall, more high-quality studies and more types of algorithms should be conducted in the future. CLINICAL RELEVANCE We evaluated the diagnostic accuracy of the existing models and provided clinicians with much advice about the selection of algorithms. This study stated the promising orientation of future research, and we believe it will promote the intelligent diagnosis of TMDs.
Collapse
Affiliation(s)
- Yunan Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Tao Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yunhao Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yutao Xiong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Wei Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Wei Zeng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Wei Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Chang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Mackie T, Al Turkestani N, Bianchi J, Li T, Ruellas A, Gurgel M, Benavides E, Soki F, Cevidanes L. Quantitative bone imaging biomarkers and joint space analysis of the articular Fossa in temporomandibular joint osteoarthritis using artificial intelligence models. FRONTIERS IN DENTAL MEDICINE 2022; 3:1007011. [PMID: 36404987 PMCID: PMC9673279 DOI: 10.3389/fdmed.2022.1007011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2024] Open
Abstract
Temporomandibular joint osteoarthritis (TMJ OA) is a disease with a multifactorial etiology, involving many pathophysiological processes, and requiring comprehensive assessments to characterize progressive cartilage degradation, subchondral bone remodeling, and chronic pain. This study aimed to integrate quantitative biomarkers of bone texture and morphometry of the articular fossa and joint space to advance the role of imaging phenotypes for diagnosis of Temporomandibular Joint Osteoarthritis (TMJ OA) in early to moderate stages by improving the performance of machine-learning algorithms to detect TMJ OA status. Ninety-two patients were prospectively enrolled (184 h-CBCT scans of the right and left mandibular condyles), divided into two groups: 46 control and 46 TMJ OA subjects. No significant difference in the articular fossa radiomic biomarkers was found between TMJ OA and control patients. The superior condyle-to-fossa distance (p < 0.05) was significantly smaller in diseased patients. The interaction effects of the articular fossa radiomic biomarkers enhanced the performance of machine-learning algorithms to detect TMJ OA status. The LightGBM model achieved an AUC 0.842 to diagnose the TMJ OA status with Headaches and Range of Mouth Opening Without Pain ranked as top features, and top interactions of VE-cadherin in Serum and Angiogenin in Saliva, TGF-β1 in Saliva and Headaches, Gender and Muscle Soreness, PA1 in Saliva and Range of Mouth Opening Without Pain, Lateral Condyle Grey Level Non-Uniformity and Lateral Fossa Short Run Emphasis, TGF-β1 in Serum and Lateral Fossa Trabeculae number, MMP3 in Serum and VEGF in Serum, Headaches and Lateral Fossa Trabecular spacing, Headaches and PA1 in Saliva, and Headaches and BDNF in Saliva. Our preliminary results indicate that condyle imaging features may be more important in regards to main effects, but the fossa imaging features may have a larger contribution in terms of interaction effects. More studies are needed to optimize and further enhance machine-learning algorithms to detect early markers of disease, improve prediction of disease progression and severity to ultimately better serve clinical decision support systems in the treatment of patients with TMJ OA.
Collapse
Affiliation(s)
- Tamara Mackie
- Department of Orthodontics and Pediatric Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Najla Al Turkestani
- Department of Orthodontics and Pediatric Dentistry, University of Michigan, Ann Arbor, MI, United States
- Department of Restorative and Aesthetic Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jonas Bianchi
- Department of Orthodontics, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, United States
| | - Tengfei Li
- Department of Radiology and Biomedical Research Imaging Center, University of North, Chapel Hill, NC, United States
| | - Antonio Ruellas
- Department of Orthodontics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcela Gurgel
- Department of Orthodontics and Pediatric Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Erika Benavides
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Fabiana Soki
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Lucia Cevidanes
- Department of Orthodontics and Pediatric Dentistry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
4
|
Warner E, Al-Turkestani N, Bianchi J, Gurgel ML, Cevidanes L, Rao A. Predicting Osteoarthritis of the Temporomandibular Joint Using Random Forest with Privileged Information. ETHICAL AND PHILOSOPHICAL ISSUES IN MEDICAL IMAGING, MULTIMODAL LEARNING AND FUSION ACROSS SCALES FOR CLINICAL DECISION SUPPORT, AND TOPOLOGICAL DATA ANALYSIS FOR BIOMEDICAL IMAGING : 1ST INTERNATIONAL WORKSHOP, EPIMI 2022, 12TH INTERNA... 2022; 13755:77-86. [PMID: 37416761 PMCID: PMC10323493 DOI: 10.1007/978-3-031-23223-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Osteoarthritis of the temporomandibular joint (TMJ OA) is the most common disorder of the TMJ. A clinical decision support (CDS) system designed to detect TMJ OA could function as a useful screening tool as part of regular check-ups to detect early onset. This study implements a CDS concept model based on Random Forest and dubbed RF+ to predict TMJ OA with the hypothesis that a model which leverages high-resolution radiological and biomarker data in training only can improve predictions compared with a baseline model which does not use privileged information. We found that the RF+ model can outperform the baseline model even when privileged features are not of gold standard quality. Additionally, we introduce a novel method for post-hoc feature analysis, finding shortRunHighGreyLevelEmphasis of the lateral condyles and joint distance to be the most important features from the privileged modalities for predicting TMJ OA.
Collapse
Affiliation(s)
- Elisa Warner
- University of Michigan, Ann Arbor, MI 48109, USA
| | - Najla Al-Turkestani
- University of Michigan, Ann Arbor, MI 48109, USA
- King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Jonas Bianchi
- University of the Pacific, San Francisco, CA 94103, USA
| | | | | | - Arvind Rao
- University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|