1
|
Sethi AK, Muddaloor P, Anvekar P, Agarwal J, Mohan A, Singh M, Gopalakrishnan K, Yadav A, Adhikari A, Damani D, Kulkarni K, Aakre CA, Ryu AJ, Iyer VN, Arunachalam SP. Digital Pulmonology Practice with Phonopulmography Leveraging Artificial Intelligence: Future Perspectives Using Dual Microwave Acoustic Sensing and Imaging. SENSORS (BASEL, SWITZERLAND) 2023; 23:5514. [PMID: 37420680 DOI: 10.3390/s23125514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 07/09/2023]
Abstract
Respiratory disorders, being one of the leading causes of disability worldwide, account for constant evolution in management technologies, resulting in the incorporation of artificial intelligence (AI) in the recording and analysis of lung sounds to aid diagnosis in clinical pulmonology practice. Although lung sound auscultation is a common clinical practice, its use in diagnosis is limited due to its high variability and subjectivity. We review the origin of lung sounds, various auscultation and processing methods over the years and their clinical applications to understand the potential for a lung sound auscultation and analysis device. Respiratory sounds result from the intra-pulmonary collision of molecules contained in the air, leading to turbulent flow and subsequent sound production. These sounds have been recorded via an electronic stethoscope and analyzed using back-propagation neural networks, wavelet transform models, Gaussian mixture models and recently with machine learning and deep learning models with possible use in asthma, COVID-19, asbestosis and interstitial lung disease. The purpose of this review was to summarize lung sound physiology, recording technologies and diagnostics methods using AI for digital pulmonology practice. Future research and development in recording and analyzing respiratory sounds in real time could revolutionize clinical practice for both the patients and the healthcare personnel.
Collapse
Affiliation(s)
- Arshia K Sethi
- GIH Artificial Intelligence Laboratory (GAIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Pratyusha Muddaloor
- GIH Artificial Intelligence Laboratory (GAIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Joshika Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Anmol Mohan
- GIH Artificial Intelligence Laboratory (GAIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Keerthy Gopalakrishnan
- GIH Artificial Intelligence Laboratory (GAIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Microwave Engineering and Imaging Laboratory (MEIL), Division of Gastroenterology & Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Ashima Yadav
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Aakriti Adhikari
- GIH Artificial Intelligence Laboratory (GAIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Devanshi Damani
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Internal Medicine, Texas Tech University Health Science Center, El Paso, TX 79995, USA
| | - Kanchan Kulkarni
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, U1045, F-33000 Bordeaux, France
- IHU Liryc, Heart Rhythm Disease Institute, Fondation Bordeaux Université, F-33600 Pessac, France
| | | | - Alexander J Ryu
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Vivek N Iyer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Shivaram P Arunachalam
- GIH Artificial Intelligence Laboratory (GAIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Microwave Engineering and Imaging Laboratory (MEIL), Division of Gastroenterology & Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Sfayyih AH, Sulaiman N, Sabry AH. A review on lung disease recognition by acoustic signal analysis with deep learning networks. JOURNAL OF BIG DATA 2023; 10:101. [PMID: 37333945 PMCID: PMC10259357 DOI: 10.1186/s40537-023-00762-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/08/2023] [Indexed: 06/20/2023]
Abstract
Recently, assistive explanations for difficulties in the health check area have been made viable thanks in considerable portion to technologies like deep learning and machine learning. Using auditory analysis and medical imaging, they also increase the predictive accuracy for prompt and early disease detection. Medical professionals are thankful for such technological support since it helps them manage further patients because of the shortage of skilled human resources. In addition to serious illnesses like lung cancer and respiratory diseases, the plurality of breathing difficulties is gradually rising and endangering society. Because early prediction and immediate treatment are crucial for respiratory disorders, chest X-rays and respiratory sound audio are proving to be quite helpful together. Compared to related review studies on lung disease classification/detection using deep learning algorithms, only two review studies based on signal analysis for lung disease diagnosis have been conducted in 2011 and 2018. This work provides a review of lung disease recognition with acoustic signal analysis with deep learning networks. We anticipate that physicians and researchers working with sound-signal-based machine learning will find this material beneficial.
Collapse
Affiliation(s)
- Alyaa Hamel Sfayyih
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Nasri Sulaiman
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Ahmad H. Sabry
- Department of Computer Engineering, Al-Nahrain University, Al Jadriyah Bridge, 64074 Baghdad, Iraq
| |
Collapse
|
3
|
Lal KN. A lung sound recognition model to diagnoses the respiratory diseases by using transfer learning. MULTIMEDIA TOOLS AND APPLICATIONS 2023; 82:1-17. [PMID: 37362727 PMCID: PMC10050810 DOI: 10.1007/s11042-023-14727-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/29/2022] [Accepted: 02/05/2023] [Indexed: 06/28/2023]
Abstract
Respiratory disease is one of the leading causes of death in the world. Through advances in Artificial Intelligence, it appears possible for the days of misdiagnosis and treatment of respiratory disease symptoms rather than their root cause to move behind us. The traditional convolutional neural network cannot extract the temporal features of lung sounds. To solve the problem, a lung sounds recognition algorithm based on VGGish- stacked BiGRU is proposed which combines the VGGish network with the stacked bidirectional gated recurrent unit neural network. A lung Sound Recognition Algorithm Based on VGGish-Stacked BiGRU is used as a feature extractor which is a pre-trained model used for transfer learning. The target model is built with the same structure as the source model which is the VGGish model and parameter transfer is done from the source model to the target model. The multi-layer BiGRU stack is used to enhance the feature value and retain the model. While fine-tuning of the parameter of VGGish is frozen which successfully improves the model. The experimental results show that the proposed algorithm improves the recognition accuracy of lung sounds and the recognition accuracy of respiratory diseases.
Collapse
Affiliation(s)
- Kumari Nidhi Lal
- Department of Computer Science Engineering, Visvesvaraya National Institute of Technology (VNIT Nagpur), Nagpur, Maharashrta India
| |
Collapse
|
5
|
Nguyen T, Pernkopf F. Lung Sound Classification Using Co-tuning and Stochastic Normalization. IEEE Trans Biomed Eng 2022; 69:2872-2882. [PMID: 35254969 DOI: 10.1109/tbme.2022.3156293] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Computational methods for lung sound analysis are beneficial for computer-aided diagnosis support, storage and monitoring in critical care. In this paper, we use pre-trained ResNet models as backbone architectures for classification of adventitious lung sounds and respiratory diseases. The learned representation of the pre-trained model is transferred by using vanilla fine-tuning, co-tuning, stochastic normalization and the combination of the co-tuning and stochastic normalization techniques. Furthermore, data augmentation in both time domain and time-frequency domain is used to account for the class imbalance of the ICBHI and our multi-channel lung sound dataset. Additionally, we introduce spectrum correction to account for the variations of the recording device properties on the ICBHI dataset. Empirically, our proposed systems mostly outperform all state-of-the-art lung sound classification systems for the adventitious lung sounds and respiratory diseases of both datasets.
Collapse
|