1
|
Zhang X, Ali S, Liu T, Zhao X, Cui Z, Han M, Ma S, Zhu J, Kang Y, Wang L, Wang X, Zhang L. Robust and smooth Couinaud segmentation via anatomical structure-guided point-voxel network. Comput Biol Med 2024; 182:109202. [PMID: 39341107 DOI: 10.1016/j.compbiomed.2024.109202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/19/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Precise Couinaud segmentation from preoperative liver computed tomography (CT) is crucial for surgical planning and lesion examination. However, this task is challenging as it is defined based on vessel structures, and there is no intensity contrast between adjacent Couinaud segments in CT images. To solve this challenge, we design a multi-scale point-voxel fusion framework, which can more effectively model the spatial relationship of points and the semantic information of the image, producing robust and smooth Couinaud segmentations. Specifically, we first segment the liver and vessels from the CT image and generate 3D liver point clouds and voxel grids embedded with the vessel structure. Then, our method with two input-specific branches extracts complementary feature representations from points and voxels, respectively. The local attention module adaptively fuses features from the two branches at different scales to balance the contribution of different branches in learning more discriminative features. Furthermore, we propose a novel distance loss at the feature level to make the features in the segment more compact, thereby improving the certainty of segmentation between segments. Our experimental results on three public liver datasets demonstrate that our proposed method outperforms several state-of-the-art methods by large margins. Specifically, in out-of-distribution (OOD) testing of LiTS dataset, our method exceeded the voxel-based 3D UNet by approximately 20% in Dice score, and outperformed the point-based PointNet2Plus by approximately 8% in Dice score. Our code and manual annotations of the public datasets presented in this paper are available online: https://github.com/xukun-zhang/Couinaud-Segmentation.
Collapse
Affiliation(s)
- Xukun Zhang
- Academy for Engineering and Technology, Fudan University, Shanghai 200082, China.
| | - Sharib Ali
- The School of Computing, University of Leeds, Leeds, UK.
| | - Tao Liu
- Academy for Engineering and Technology, Fudan University, Shanghai 200082, China.
| | - Xiao Zhao
- Academy for Engineering and Technology, Fudan University, Shanghai 200082, China.
| | - Zhiming Cui
- The School of Biomedical Engineering, ShanghaiTech University, Shanghai 200082, China.
| | - Minghao Han
- Academy for Engineering and Technology, Fudan University, Shanghai 200082, China.
| | - Shuwei Ma
- Academy for Engineering and Technology, Fudan University, Shanghai 200082, China.
| | - Jingyi Zhu
- Academy for Engineering and Technology, Fudan University, Shanghai 200082, China.
| | - Yanlan Kang
- Academy for Engineering and Technology, Fudan University, Shanghai 200082, China.
| | - Le Wang
- Academy for Engineering and Technology, Fudan University, Shanghai 200082, China.
| | - Xiaoying Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200082, China.
| | - Lihua Zhang
- Academy for Engineering and Technology, Fudan University, Shanghai 200082, China.
| |
Collapse
|
2
|
Hu W, Jiang H, Wang M. Flexible needle puncture path planning for liver tumors based on deep reinforcement learning. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac8fdd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 09/06/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. Minimally invasive surgery has been widely adopted in the treatment of patients with liver tumors. In liver tumor puncture surgery, an image-guided ablation needle for puncture surgery, which first reaches a target tumor along a predetermined path, and then ablates the tumor or injects drugs near the tumor, is often used to reduce patient trauma, improving the safety of surgery operations and avoiding possible damage to large blood vessels and key organs. In this paper, a path planning method for computer tomography (CT) guided ablation needle in liver tumor puncture surgery is proposed. Approach. Given a CT volume containing abdominal organs, we first classify voxels and optimize the number of voxels to reduce volume rendering pressure, then we reconstruct a multi-scale 3D model of the liver and hepatic vessels. Secondly, multiple entry points of the surgical path are selected based on the strong and weak constraints of clinical puncture surgery through multi-agent reinforcement learning. We select the optimal needle entry point based on the length measurement. Then, through the incremental training of the double deep Q-learning network (DDQN), the transmission of network parameters from the small-scale environment to the larger-scale environment is accomplished, and the optimal surgical path with more optimized details is obtained. Main results. To avoid falling into local optimum in network training, improve both the convergence speed and performance of the network, and maximize the cumulative reward, we train the path planning network on different scales 3D reconstructed organ models, and validate our method on tumor samples from public datasets. The scores of human surgeons verified the clinical relevance of the proposed method. Significance. Our method can robustly provide the optimal puncture path of flexible needle for liver tumors, which is expected to provide a reference for surgeons’ preoperative planning.
Collapse
|
3
|
Gong Z, Song J, Guo W, Ju R, Zhao D, Tan W, Zhou W, Zhang G. Abdomen tissues segmentation from computed tomography images using deep learning and level set methods. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:14074-14085. [PMID: 36654080 DOI: 10.3934/mbe.2022655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Accurate abdomen tissues segmentation is one of the crucial tasks in radiation therapy planning of related diseases. However, abdomen tissues segmentation (liver, kidney) is difficult because the low contrast between abdomen tissues and their surrounding organs. In this paper, an attention-based deep learning method for automated abdomen tissues segmentation is proposed. In our method, image cropping is first applied to the original images. U-net model with attention mechanism is then constructed to obtain the initial abdomen tissues. Finally, level set evolution which consists of three energy terms is used for optimize the initial abdomen segmentation. The proposed model is evaluated across 470 subsets. For liver segmentation, the mean dice are 96.2 and 95.1% for the FLARE21 datasets and the LiTS datasets, respectively. For kidney segmentation, the mean dice are 96.6 and 95.7% for the FLARE21 datasets and the LiTS datasets, respectively. Experimental evaluation exhibits that the proposed method can obtain better segmentation results than other methods.
Collapse
Affiliation(s)
- Zhaoxuan Gong
- Department of Computer Science and Information Engineering, Shenyang Aerospace University, Shenyang 110136, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang 110819, China
| | - Jing Song
- Department of Computer Science and Information Engineering, Shenyang Aerospace University, Shenyang 110136, China
| | - Wei Guo
- Department of Computer Science and Information Engineering, Shenyang Aerospace University, Shenyang 110136, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang 110819, China
| | - Ronghui Ju
- Liaoning provincial people's hospital, Shenyang 110067, China
| | - Dazhe Zhao
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang 110819, China
| | - Wenjun Tan
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang 110819, China
| | - Wei Zhou
- Department of Computer Science and Information Engineering, Shenyang Aerospace University, Shenyang 110136, China
| | - Guodong Zhang
- Department of Computer Science and Information Engineering, Shenyang Aerospace University, Shenyang 110136, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang 110819, China
| |
Collapse
|