1
|
Javadpour P, Abbaszadeh F, Ahmadiani A, Rezaei M, Ghasemi R. Mitochondrial Transportation, Transplantation, and Subsequent Immune Response in Alzheimer's Disease: An Update. Mol Neurobiol 2024; 61:7151-7167. [PMID: 38368286 DOI: 10.1007/s12035-024-04009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/31/2024] [Indexed: 02/19/2024]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by memory impairment and a progressive decline in cognitive function. Mitochondrial dysfunction has been identified as an important contributor to the development of AD, leading to oxidative stress and energy deficits within the brain. While current treatments for AD aim to alleviate symptoms, there is an urgent need to target the underlying mechanisms. The emerging field of mitotherapy, which involves the transplantation of healthy mitochondria into damaged cells, has gained substantial attention and has shown promising results. However, research in the context of AD remains limited, necessitating further investigations. In this review, we summarize the mitochondrial pathways that contribute to the progression of AD. Additionally, we discuss mitochondrial transfer among brain cells and mitotherapy, with a focus on different administration routes, various sources of mitochondria, and potential modifications to enhance transplantation efficacy. Finally, we review the limited available evidence regarding the immune system's response to mitochondrial transplantation in damaged brain regions.
Collapse
Affiliation(s)
- Pegah Javadpour
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Rezaei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Rasoul Ghasemi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Falvo S, Grillo G, Latino D, Chieffi Baccari G, Di Fiore MM, Venditti M, Petito G, Santillo A. Potential role of mitochondria and endoplasmic reticulum in the response elicited by D-aspartate in TM4 Sertoli cells. Front Cell Dev Biol 2024; 12:1438231. [PMID: 39105170 PMCID: PMC11298366 DOI: 10.3389/fcell.2024.1438231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/04/2024] [Indexed: 08/07/2024] Open
Abstract
D-Aspartic Acid (D-Asp) affects spermatogenesis by enhancing the biosynthesis of the sex steroid hormones acting either through the hypothalamus-pituitary-testis axis or directly on Leydig cells. Recently, in vitro studies have also demonstrated the direct effects of D-Asp on the proliferation and/or activity of germ cells. However, although D-Asp is present in Sertoli cells (SC), the specific role of the amino acid in these cells remains unknown. This study investigated the effects of D-Asp on the proliferation and activity of TM4 SC, focusing on the mitochondrial compartment and its association with the endoplasmic reticulum (ER). We found that D-Asp enhanced the proliferation and activity of TM4 cells as evidenced by the activation of ERK/Akt/PCNA pathway and the increase in the protein levels of the androgen receptor. Furthermore, D-Asp reduced both the oxidative stress and apoptotic process. An increase in mitochondrial functionality and dynamics, as well as a reduction in ER stress, were also found in D-Asp-treated TM4 cells. It is known that mitochondria are closely associated with ER to form the Mitochondrial-Associated Endoplasmic Reticulum Membranes (MAM), the site of calcium ions and lipid transfer from ER to the mitochondria, and vice versa. The data demonstrated that D-Asp induced stabilization of MAM in TM4 cells. In conclusion, this study is the first to demonstrate a direct effect of D-Asp on SC activity and to clarify the cellular/molecular mechanism underlying these effects, suggesting that D-Asp could stimulate spermatogenesis by improving the efficiency of SC.
Collapse
Affiliation(s)
- Sara Falvo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Giulia Grillo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Debora Latino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Gabriella Chieffi Baccari
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Maria Maddalena Di Fiore
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Massimo Venditti
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giuseppe Petito
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Alessandra Santillo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| |
Collapse
|
3
|
Surguchov A, Surguchev AA. Association between Parkinson's Disease and Cancer: New Findings and Possible Mediators. Int J Mol Sci 2024; 25:3899. [PMID: 38612708 PMCID: PMC11011322 DOI: 10.3390/ijms25073899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Epidemiological evidence points to an inverse association between Parkinson's disease (PD) and almost all cancers except melanoma, for which this association is positive. The results of multiple studies have demonstrated that patients with PD are at reduced risk for the majority of neoplasms. Several potential biological explanations exist for the inverse relationship between cancer and PD. Recent results identified several PD-associated proteins and factors mediating cancer development and cancer-associated factors affecting PD. Accumulating data point to the role of genetic traits, members of the synuclein family, neurotrophic factors, the ubiquitin-proteasome system, circulating melatonin, and transcription factors as mediators. Here, we present recent data about shared pathogenetic factors and mediators that might be involved in the association between these two diseases. We discuss how these factors, individually or in combination, may be involved in pathology, serve as links between PD and cancer, and affect the prevalence of these disorders. Identification of these factors and investigation of their mechanisms of action would lead to the discovery of new targets for the treatment of both diseases.
Collapse
Affiliation(s)
- Andrei Surguchov
- Department of Neurology, Kansas University Medical Center, Kansas City, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Alexei A Surguchev
- Department of Surgery, Section of Otolaryngology, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
4
|
Wang L, Zhang D, Jiang B, Ding H, Feng S, Zhao C, Wang X, Wu J. 4-Phenylbutyric Acid Attenuates Soybean Glycinin/β-Conglycinin-Induced IPEC-J2 Cells Apoptosis by Regulating the Mitochondria-Associated Endoplasmic Reticulum Membrane and NLRP-3. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5926-5934. [PMID: 38457471 DOI: 10.1021/acs.jafc.3c09630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Glycinin (11S) and β-conglycinin (7S) from soybean (glycine max) cause diarrhea and intestinal barrier damage in young animals. Understanding the mechanisms underlying the damage caused by 7S and 11S, it is vital to develop strategies to eliminate allergenicity. Consequently, we investigated 7S/11S-mediated apoptosis in porcine intestinal epithelial (IPEC-J2) cells. IPEC-J2 cells suffered endoplasmic reticulum stress (ERS) in response to 7S and 11S, activating protein kinase RNA-like ER kinase, activating transcription factor 6, C/EBP homologous protein, and inositol-requiring enzyme 1 alpha. 4-Phenylbutyric acid (4-PBA) treatment alleviated ERS; reduced the NLR family pyrin domain containing 3, interleukin-1β, and interleukin-18 levels; inhibited apoptosis; increased mitofusin 2 expression; and mitigated Ca2+ overload and mitochondria-associated ER membrane (MAM) dysfunction, thereby ameliorating IPEC-J2 injury. We demonstrated the pivotal role of ERS in MAM dysfunction and 7S- and 11S-mediated apoptosis, providing insights into 7S- and 11S-mediated intestinal barrier injury prevention and treatment.
Collapse
Affiliation(s)
- Lei Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Daoliang Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Benzheng Jiang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Hongyan Ding
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Shibin Feng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Chang Zhao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Jinjie Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| |
Collapse
|
5
|
Hofstadter WA, Tsopurashvili E, Cristea IM. Viral regulation of organelle membrane contact sites. PLoS Biol 2024; 22:e3002529. [PMID: 38442090 PMCID: PMC10914265 DOI: 10.1371/journal.pbio.3002529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
At the core of organelle functions lies their ability and need to form dynamic organelle-organelle networks that drive intracellular communication and coordination of cellular pathways. These networks are facilitated by membrane contact sites (MCSs) that promote both intra-organelle and inter-organelle communication. Given their multiple functions, MCSs and the proteins that form them are commonly co-opted by viruses during infection to promote viral replication. This Essay discusses mechanisms acquired by diverse human viruses to regulate MCS functions in either proviral processes or host defense. It also examines techniques used for examining MCSs in the context of viral infections.
Collapse
Affiliation(s)
- William A. Hofstadter
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Elene Tsopurashvili
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
6
|
Makarov M, Kushnireva L, Papa M, Korkotian E. Presenilins and mitochondria-an intriguing link: mini-review. Front Neurosci 2023; 17:1249815. [PMID: 37575294 PMCID: PMC10416233 DOI: 10.3389/fnins.2023.1249815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023] Open
Abstract
This review uncovers the intricate relationship between presenilins, calcium, and mitochondria in the context of Alzheimer's disease (AD), with a particular focus on the involvement of presenilin mutations in mitochondrial dysfunction. So far, it is unclear whether the impairment of mitochondrial function arises primarily from damage inflicted by β-amyloid upon mitochondria or from the disruption of calcium homeostasis due to presenilins dysfunctions. The roles of presenilins in mitophagy, autophagy, mitochondrial dynamics, and many other functions, non-γ-secretase related, also require close attention in future research. Resolution of contradictions in understanding of presenilins cellular functions are needed for new effective therapeutic strategies for AD.
Collapse
Affiliation(s)
- Mark Makarov
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
- Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Liliia Kushnireva
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Michele Papa
- Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Eduard Korkotian
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
7
|
Chaperone-Dependent Mechanisms as a Pharmacological Target for Neuroprotection. Int J Mol Sci 2023; 24:ijms24010823. [PMID: 36614266 PMCID: PMC9820882 DOI: 10.3390/ijms24010823] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
Modern pharmacotherapy of neurodegenerative diseases is predominantly symptomatic and does not allow vicious circles causing disease development to break. Protein misfolding is considered the most important pathogenetic factor of neurodegenerative diseases. Physiological mechanisms related to the function of chaperones, which contribute to the restoration of native conformation of functionally important proteins, evolved evolutionarily. These mechanisms can be considered promising for pharmacological regulation. Therefore, the aim of this review was to analyze the mechanisms of endoplasmic reticulum stress (ER stress) and unfolded protein response (UPR) in the pathogenesis of neurodegenerative diseases. Data on BiP and Sigma1R chaperones in clinical and experimental studies of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease are presented. The possibility of neuroprotective effect dependent on Sigma1R ligand activation in these diseases is also demonstrated. The interaction between Sigma1R and BiP-associated signaling in the neuroprotection is discussed. The performed analysis suggests the feasibility of pharmacological regulation of chaperone function, possibility of ligand activation of Sigma1R in order to achieve a neuroprotective effect, and the need for further studies of the conjugation of cellular mechanisms controlled by Sigma1R and BiP chaperones.
Collapse
|
8
|
The Degradation of TMEM166 by Autophagy Promotes AMPK Activation to Protect SH-SY5Y Cells Exposed to MPP+. Cells 2022; 11:cells11172706. [PMID: 36078115 PMCID: PMC9454683 DOI: 10.3390/cells11172706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/19/2022] Open
Abstract
Neuronal oxidative stress caused by mitochondrial dysfunction plays a crucial role in the development of Parkinson’s disease (PD). Growing evidence shows that autophagy confers neuroprotection in oxidative-stress-associated PD. This work aims to investigate the involvement of TMEM166, an endoplasmic-reticulum-localized autophagy-regulating protein, in the process of PD-associated oxidative stress through the classic cellular PD model of neuroblastoma SH-SY5Y cells exposed to 1-methyl-4-phenylpyridinium (MPP+). Reactive oxygen species (ROS) production and mitochondrial membrane potential were checked to assess the oxidative stress induced by MPP+ and the cellular ATP generated was determined to evaluate mitochondrial function. The effect on autophagy induction was evaluated by analyzing p62 and LC3-II/I expression and by observing the LC3 puncta and the colocalization of LC3 with LAMP1/ LAMP2. The colocalization of mitochondria with LC3, the colocalization of Tom20 with LAMP1 and Tom20 expression were analyzed to evaluate mitophagy. We found that TMEM166 is up-regulated in transcript levels, but up-regulated first and then down-regulated by autophagic degradation in protein levels upon MPP+-treatment. Overexpression of TMEM166 induces mitochondria fragmentation and dysfunction and exacerbates MPP+-induced oxidative stress and cell viability reduction. Overexpression of TMEM166 is sufficient to induce autophagy and mitophagy and promotes autophagy and mitophagy under MPP+ treatment, while knockdown of TMEM166 inhibits basal autophagic degradation. In addition, overexpressed TMEM166 suppresses AMPK activation, while TMEM166 knockdown enhances AMPK activation. Pharmacological activation of AMPK alleviates the exacerbation of oxidative stress induced by TMEM166 overexpression and increases cell viability, while pharmacological inhibition mitophagy aggravates the oxidative stress induced by MPP+ treatment combined with TMEM166 overexpression. Finally, we find that overexpressed TMEM166 partially localizes to mitochondria and, simultaneously, the active AMPK in mitochondria is decreased. Collectively, these findings suggest that TMEM166 can translocate from ER to mitochondria and inhibit AMPK activation and, in response to mitochondrial oxidative stress, neuronal cells choose to up-regulate TMEM166 to promote autophagy/mitophagy; then, the enhancing autophagy/mitophagy degrades the TMEM166 to activate AMPK, by the two means to maintain cell survival. The continuous synthesis and degradation of TMEM166 in autophagy/mitochondria flux suggest that TMEM166 may act as an autophagy/mitochondria adaptor.
Collapse
|
9
|
Yang Y, Wu J, Lu W, Dai Y, Zhang Y, Sun X. Olaparib, a PARP-1 inhibitor, protects retinal cells from ocular hypertension-associated oxidative damage. Front Cell Dev Biol 2022; 10:925835. [PMID: 36092711 PMCID: PMC9459396 DOI: 10.3389/fcell.2022.925835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022] Open
Abstract
Glaucoma is the most common cause of irreversible blindness worldwide. Elevated intraocular pressure (IOP) and relative hypoxia in the retina stimulate the production of reactive oxygen species (ROS), which, in turn, puts the retina and optic nerve under chronic oxidative stress. Emerging evidence has shown that oxidative stress can trigger PARP-1 overactivation, mitochondrial-associated endoplasmic reticulum membrane (MAM) dysregulation, and NLRP3 activation. Oxidative damage can trigger inflammasome activation, and NLRP3 is the only inflammasome associated with MAM dysregulation. In addition, multiple transcription factors are located on the MAM. This study aimed to investigate the protective effects and underlying mechanisms of a PARP-1 inhibitor (olaparib) against chronic ocular hypertension-associated retinal cell damage. We also mimicked hypoxic stimulation of a retinal precursor cell line by exposing the cells to 0.2% O2in vitro. We discovered that chronic ocular hypertension (COH) induces oxidative damage and MAM dysregulation in the retinal ganglion cells (RGCs). The protein levels of cleaved-PARP and NLRP3 were upregulated in the retinas of the COH rats. Olaparib, a PARP-1 inhibitor, alleviated COH-induced RGC loss, retinal morphological alterations, and photopic negative response amplitude reduction. Olaparib also relieved hypoxic stimulation-induced loss of cell viability and MAM dysregulation. Additionally, some indicators of mitochondrial performance, such as reactive oxygen species accumulation, mitochondrial Ca2+ influx, and mitochondrial membrane potential collapse, decreased after olaparib treatment. Olaparib attenuated the hypoxia-induced upregulation of NLRP3 protein levels as well as the phosphorylation of ERK1/2 and histone H2A.X. These results suggest that olaparib protects RGCs from chronic intraocular pressure elevation in vivo and alleviates the abnormal MAM dysregulation and mitochondrial dysfunction caused by hypoxia in vitro. This protection may be achieved by inhibiting PARP-1 overactivation, NLRP3 upregulation, and phosphorylation of ERK1/2.
Collapse
Affiliation(s)
- Yuting Yang
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jihong Wu
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Wei Lu
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiqin Dai
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Youjia Zhang
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
- *Correspondence: Xinghuai Sun,
| |
Collapse
|