1
|
Yuan R, Wang Q, Xu H, Yu H, Shi P. Control strategies for trunk exoskeletons based on motion intent recognition: A review. NeuroRehabilitation 2024; 54:575-597. [PMID: 38943405 DOI: 10.3233/nre-240066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
BACKGROUND Wearable trunk exoskeletons hold immense potential in fields such as healthcare and industry. Previous research has indicated that intention recognition control plays a crucial role in users' daily use of exoskeletons. OBJECTIVE This review aims to discuss the characteristics of intention recognition control schemes for intelligent trunk exoskeletons under different control objectives over the past decade. METHODS Considering the relatively late development of active trunk exoskeletons, we selected papers published in the last decade (2013 to 2023) from the Web of Science, PubMed, and IEEE Xplore databases. In total, 50 articles were selected and examined based on four control objectives. RESULTS In general, we found that researchers focus on trunk exoskeleton devices designed for assistance and motor augmentation, which rely more on body movement signals as a source for intention recognition. CONCLUSION Based on these results, we identify and discuss several promising research directions that may help to attain a widely accepted control methods, thereby advancing further development of trunk exoskeleton technology.
Collapse
Affiliation(s)
- Ruyu Yuan
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Qingqing Wang
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Haipeng Xu
- Physical Education Department, University of Shanghai for Science and Technology, Shanghai, China
| | - Hongliu Yu
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Assistive Devices, Shanghai, China
| | - Ping Shi
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Assistive Devices, Shanghai, China
| |
Collapse
|
2
|
Feola E, Refai MIM, Costanzi D, Sartori M, Calanca A. A Neuromechanical Model-Based Strategy to Estimate the Operator's Payload in Industrial Lifting Tasks. IEEE Trans Neural Syst Rehabil Eng 2023; 31:4644-4652. [PMID: 37983149 DOI: 10.1109/tnsre.2023.3334993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
One of the main technological barriers hindering the development of active industrial exoskeleton is today represented by the lack of suitable payload estimation algorithms characterized by high accuracy and low calibration time. The knowledge of the payload enables exoskeletons to dynamically provide the required assistance to the user. This work proposes a payload estimation methodology based on personalized Electromyography-driven musculoskeletal models (pEMS) combined with a payload estimation method we called "delta torque" that allows the decoupling of payload dynamical properties from human dynamical properties. The contribution of this work lies in the conceptualization of such methodology and its validation considering human operators during industrial lifting tasks. With respect to existing solutions often based on machine learning, our methodology requires smaller training datasets and can better generalize across different payloads and tasks. The proposed payload estimation methodology has been validated on lifting tasks with 0kg, 5kg, 10kg and 15kg, resulting in an average MAE of about 1.4 Kg. Even if 5kg and 10Kg lifting tasks were out of the training set, the MAE related to these tasks are 1.6 kg and 1.1 kg, respectively, demonstrating the generalizing property of the proposed methodology. To the best of the authors' knowledge, this is the first time that an EMG-driven model-based approach is proposed for human payload estimation.
Collapse
|
3
|
Walter T, Stutzig N, Siebert T. Active exoskeleton reduces erector spinae muscle activity during lifting. Front Bioeng Biotechnol 2023; 11:1143926. [PMID: 37180043 PMCID: PMC10168292 DOI: 10.3389/fbioe.2023.1143926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/10/2023] [Indexed: 05/15/2023] Open
Abstract
Musculoskeletal disorders (MSD) are a widespread problem, often regarding the lumbar region. Exoskeletons designed to support the lower back could be used in physically demanding professions with the intention of reducing the strain on the musculoskeletal system, e.g., by lowering task-related muscle activation. The present study aims to investigate the effect of an active exoskeleton on back muscle activity when lifting weights. Within the framework of the study, 14 subjects were asked to lift a 15 kg box with and without an active exoskeleton which allows the adjustment of different levels of support, while the activity of their M. erector spinae (MES) was measured using surface electromyography. Additionally, the subjects were asked about their overall rating of perceived exertion (RPE) during lifting under various conditions. Using the exoskeleton with the maximum level of support, the muscle activity was significantly lower than without exoskeleton. A significant correlation was found between the exoskeleton's support level and the reduction of MES activity. The higher the support level, the lower the observed muscle activity. Furthermore, when lifting with the maximum level of support, RPE was found to be significantly lower than without exoskeleton too. A reduction in the MES activity indicates actual support for the movement task and might indicate lower compression forces in the lumbar region. It is concluded that the active exoskeleton supports people noticeably when lifting heavy weights. Exoskeletons seem to be a powerful tool for reducing load during physically demanding jobs and thus, their use might be helpful in lowering the risk of MSD.
Collapse
Affiliation(s)
- Tobias Walter
- Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Norman Stutzig
- Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Tobias Siebert
- Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
- Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
4
|
Farris DJ, Harris DJ, Rice HM, Campbell J, Weare A, Risius D, Armstrong N, Rayson MP. A systematic literature review of evidence for the use of assistive exoskeletons in defence and security use cases. ERGONOMICS 2023; 66:61-87. [PMID: 35348442 DOI: 10.1080/00140139.2022.2059106] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Advances in assistive exoskeleton technology, and a boom in related scientific literature, prompted a need to review the potential use of exoskeletons in defence and security. A systematic review examined the evidence for successful augmentation of human performance in activities deemed most relevant to military tasks. Categories of activities were determined a priori through literature scoping and Human Factors workshops with military stakeholders. Workshops identified promising opportunities and risks for integration of exoskeletons into military use cases. The review revealed promising evidence for exoskeletons' capacity to assist with load carriage, manual lifting, and working with tools. However, the review also revealed significant gaps in exoskeleton capabilities and likely performance levels required in the use case scenarios. Consequently, it was recommended that a future roadmap for introducing exoskeletons to military environments requires development of performance criteria for exoskeletons that can be used to implement a human-centred approach to research and development.
Collapse
Affiliation(s)
- Dominic J Farris
- Sport & Health Sciences, College of Life & Environmental Sciences, University of Exeter, Exeter, UK
| | - David J Harris
- Sport & Health Sciences, College of Life & Environmental Sciences, University of Exeter, Exeter, UK
| | - Hannah M Rice
- Sport & Health Sciences, College of Life & Environmental Sciences, University of Exeter, Exeter, UK
| | | | | | - Debbie Risius
- Defence Science and Technology Laboratory, Salisbury, UK
| | - Nicola Armstrong
- Defence Science and Technology Laboratory, Salisbury, UK
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Mark P Rayson
- Human Social Sciences Research Capability Framework, BAE Systems, London, UK
| |
Collapse
|
5
|
Proud JK, Lai DTH, Mudie KL, Carstairs GL, Billing DC, Garofolini A, Begg RK. Exoskeleton Application to Military Manual Handling Tasks. HUMAN FACTORS 2022; 64:527-554. [PMID: 33203237 DOI: 10.1177/0018720820957467] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
OBJECTIVE The aim of this review was to determine how exoskeletons could assist Australian Defence Force personnel with manual handling tasks. BACKGROUND Musculoskeletal injuries due to manual handling are physically damaging to personnel and financially costly to the Australian Defence Force. Exoskeletons may minimize injury risk by supporting, augmenting, and/or amplifying the user's physical abilities. Exoskeletons are therefore of interest in determining how they could support the unique needs of military manual handling personnel. METHOD Industrial and military exoskeleton studies from 1990 to 2019 were identified in the literature. This included 67 unique exoskeletons, for which Information about their current state of development was tabulated. RESULTS Exoskeleton support of manual handling tasks is largely through squat/deadlift (lower limb) systems (64%), with the proposed use case for these being load carrying (42%) and 78% of exoskeletons being active. Human-exoskeleton analysis was the most prevalent form of evaluation (68%) with reported reductions in back muscle activation of 15%-54%. CONCLUSION The high frequency of citations of exoskeletons targeting load carrying reflects the need for devices that can support manual handling workers. Exoskeleton evaluation procedures varied across studies making comparisons difficult. The unique considerations for military applications, such as heavy external loads and load asymmetry, suggest that a significant adaptation to current technology or customized military-specific devices would be required for the introduction of exoskeletons into a military setting. APPLICATION Exoskeletons in the literature and their potential to be adapted for application to military manual handling tasks are presented.
Collapse
Affiliation(s)
| | | | - Kurt L Mudie
- 2222 Defence Science and Technology (DST), Melbourne, Australia
| | | | | | | | | |
Collapse
|
6
|
Kermavnar T, de Vries AW, de Looze MP, O'Sullivan LW. Effects of industrial back-support exoskeletons on body loading and user experience: an updated systematic review. ERGONOMICS 2021; 64:685-711. [PMID: 33369518 DOI: 10.1080/00140139.2020.1870162] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
This study is an updated systematic review of papers published in the last 5 years on industrial back-support exoskeletons. The research questions were aimed at addressing the recent findings regarding objective (e.g. body loading, user performance) and subjective evaluations (e.g. user satisfaction), potential side effects, and methodological aspects of usability testing. Thirteen studies of active and twenty of passive exoskeletons were identified. The exoskeletons were tested during lifting and bending tasks, predominantly in laboratory settings and among healthy young men. In general, decreases in participants' back-muscle activity, peak L5/S1 moments and spinal compression forces were reported. User endurance during lifting and static bending improved, but performance declined during tasks that required increased agility. The overall user satisfaction was moderate. Some side effects were observed, including increased abdominal/lower-limb muscle activity and changes in joint angles. A need was identified for further field studies, involving industrial workers, and reflecting actual work situations. Practitioner summary: Due to increased research activity in the field, a systematic review was performed of recent studies on industrial back-support exoskeletons, addressing objective and subjective evaluations, side effects, and methodological aspects of usability testing. The results indicate the efficiency of exoskeletons in back-load reduction and a need for further studies in real work situations. Abbrevaitions: BB: biceps brachii; BF: biceps femoris; CoM: centre of mass; DA: deltoideus anterior; EMG: electromyography; ES: erector spinae; ES-C: erector spinae-cervical; ESI: erector spinae iliocostalis; ESI-L: erector spinae iliocostalis-lumborum; ESL: erector spinae longissimus; ES-L: erector spinae-lumbar; ESL-L: erector spinae longissimus-lumborum; ESL-T: erector spinae longissimus-thoracis; ES-T: erector spinae-thoracic; GM: glutaeus maximus; LBP: low back pain; LD: latissimus dorsi; LPD: local perceived discomfort scale; LPP: local perceived pressure scale; MS: multifidus spinae; MSD: musculoskeletal disorder; M-SFS: modified spinal function sort; NMV: no mean value provided; OA: obliquus abdominis (internus and externus); OEA: obliquus externus abdominis; OIA : obliquus internus abdominis; RA: rectus abdominis; RF: rectus femoris; RoM: range of motion; SUS: system usability scale; T: trapezius (pars Ascendens and Descendens); TA: trapezius pars ascendens; TC: mid-cervical trapezius; TD: trapezius pars descendens; VAS: visual analog scale; VL: vastus lateralis; VM: vastus medialis.
Collapse
Affiliation(s)
| | | | | | - Leonard W O'Sullivan
- School of Design, Confirm Smart Manufacturing Centre and Health Research Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
7
|
Lazzaroni M, Tabasi A, Toxiri S, Caldwell DG, De Momi E, van Dijk W, de Looze MP, Kingma I, van Dieën JH, Ortiz J. Evaluation of an acceleration-based assistive strategy to control a back-support exoskeleton for manual material handling. WEARABLE TECHNOLOGIES 2021; 1:e9. [PMID: 39050266 PMCID: PMC11265403 DOI: 10.1017/wtc.2020.8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/02/2020] [Accepted: 08/25/2020] [Indexed: 07/27/2024]
Abstract
To reduce the incidence of occupational musculoskeletal disorders, back-support exoskeletons are being introduced to assist manual material handling activities. Using a device of this type, this study investigates the effects of a new control strategy that uses the angular acceleration of the user's trunk to assist during lifting tasks. To validate this new strategy, its effectiveness was experimentally evaluated relative to the condition without the exoskeleton as well as against existing strategies for comparison. Using the exoskeleton during lifting tasks reduced the peak compression force on the L5S1 disc by up to 16%, with all the control strategies. Substantial differences between the control strategies in the reductions of compression force, lumbar moment and back muscle activation were not observed. However, the new control strategy reduced the movement speed less with respect to the existing strategies. Thanks to improved timing in the assistance in relation to the typical dynamics of the target task, the hindrance to typical movements appeared reduced, thereby promoting intuitiveness and comfort.
Collapse
Affiliation(s)
- Maria Lazzaroni
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Ali Tabasi
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Stefano Toxiri
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Darwin G. Caldwell
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Elena De Momi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | | | - Michiel P. de Looze
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- TNO, Leiden, The Netherlands
| | - Idsart Kingma
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jaap H. van Dieën
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jesús Ortiz
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
8
|
Poliero T, Lazzaroni M, Toxiri S, Di Natali C, Caldwell DG, Ortiz J. Applicability of an Active Back-Support Exoskeleton to Carrying Activities. Front Robot AI 2020; 7:579963. [PMID: 33501340 PMCID: PMC7805869 DOI: 10.3389/frobt.2020.579963] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/05/2020] [Indexed: 11/13/2022] Open
Abstract
Occupational back-support exoskeletons are becoming a more and more common solution to mitigate work-related lower-back pain associated with lifting activities. In addition to lifting, there are many other tasks performed by workers, such as carrying, pushing, and pulling, that might benefit from the use of an exoskeleton. In this work, the impact that carrying has on lower-back loading compared to lifting and the need to select different assistive strategies based on the performed task are presented. This latter need is studied by using a control strategy that commands for constant torques. The results of the experimental campaign conducted on 9 subjects suggest that such a control strategy is beneficial for the back muscles (up to 12% reduction in overall lumbar activity), but constrains the legs (around 10% reduction in hip and knee ranges of motion). Task recognition and the design of specific controllers can be exploited by active and, partially, passive exoskeletons to enhance their versatility, i.e., the ability to adapt to different requirements.
Collapse
Affiliation(s)
- Tommaso Poliero
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genoa, Italy
- Department of Informatics Bioengineering Robotics and Systems Engineering, University of Genoa, Genoa, Italy
| | - Maria Lazzaroni
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genoa, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Stefano Toxiri
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Christian Di Natali
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Darwin G. Caldwell
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Jesús Ortiz
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|